Publications by authors named "Pallab Roy"

Rationale: Oxygen isotopic ratios of silicates are excellent tools to reconstruct paleotemperature and isotopic composition of the precipitating fluid. However, the measurement of O/ O is difficult due to the low abundance of O. The present study reports a simplified high-precision analytical technique for measuring the two oxygen isotope ratios, O/ O and O/ O, in silicates.

View Article and Find Full Text PDF

Glaucoma is one of the leading cause of blindness. The manual examination of optic cup and disc is a standard procedure used for detecting glaucoma. This paper presents a fully automatic regression based method which accurately segments optic cup and disc in retinal colour fundus image.

View Article and Find Full Text PDF

Retinal image quality assessment (IQA) algorithms use different hand crafted features for training classifiers without considering the working of the human visual system (HVS) which plays an important role in IQA. We propose a convolutional neural network (CNN) based approach that determines image quality using the underlying principles behind the working of the HVS. CNNs provide a principled approach to feature learning and hence higher accuracy in decision making.

View Article and Find Full Text PDF

We present a novel method for the quantification of focal arteriolar narrowing (FAN) in human retina, a precursor for hypertension, stroke and other cardiovascular diseases. A reliable and robust arteriolar boundary mapping method is proposed where intensity, gradient and spatial prior knowledge about the arteriolar shape is incorporated into a graph based optimization method to obtain the arteriolar boundary. Following the mapping of the arteriolar boundaries, arteriolar widths are analysed to quantify the severity of focal arteriolar narrowing (FAN).

View Article and Find Full Text PDF

Multi-atlas segmentation first registers each atlas image to the target image and transfers the label of atlas image to the coordinate system of the target image. The transferred labels are then combined, using a label fusion algorithm. In this paper, we propose a novel label fusion method which aggregates discriminative learning and generative modeling for segmentation of cardiac MR images.

View Article and Find Full Text PDF

White matter lesions (WMLs) are small groups of dead cells that clump together in the white matter of brain. In this paper, we propose a reliable method to automatically segment WMLs. Our method uses a novel filter to enhance the intensity of WMLs.

View Article and Find Full Text PDF

Retinal arteriovenous (AV) nicking is a precursor for hypertension, stroke and other cardiovascular diseases. In this paper, an effective method is proposed for the analysis of retinal venular widths to automatically classify the severity level of AV nicking. We use combination of intensity and edge information of the vein to compute its widths.

View Article and Find Full Text PDF

Aim: This study was designed to analyze the incidence and spectrum of adverse effects of blood transfusion so as to initiate measures to minimize risks and improve overall transfusion safety in the institute.

Materials And Methods: During the period from July 2002 to July 2003 all the adverse events related to transfusion of blood and blood components in various clinical specialties were recorded. They were analyzed and classified on the basis of their clinical features and laboratory tests.

View Article and Find Full Text PDF

Present work conceptualizes a specific technology, based on combining floating and pulsatile principles to develop drug delivery system, intended for chronotherapy in nocturnal acid breakthrough. This approach will be achieved by using a programmed delivery of ranitidine hydrochloride from a floating tablet with time-lagged coating. In this study, investigation of the functionality of the outer polymer coating to predict lag time and drug release was statistically analyzed using the response surface methodology (RSM).

View Article and Find Full Text PDF

In the body under physiological conditions, many vital functions are regulated by transient release of bioactive substances at a specific time and site. Thus, to mimic the function of living systems and in view of emerging chronotherapeutic approaches, pulsatile delivery, which is meant to release a drug following programmed lag phase, has attracted increasing interest in recent years. In pursuit of pulsatile release, various design strategies have been proposed, broadly categorized into single-unit and multiple-unit systems.

View Article and Find Full Text PDF