T cell engagers (TCEs) are becoming an integral class of biological therapeutic owing to their highly potent ability to eradicate cancer cells. Nevertheless, the widespread utility of classical CD3-targeted TCEs has been limited by narrow therapeutic index (TI) linked to systemic CD4+ T cell activation and aberrant cytokine release. One attractive approach to circumvent the systemic activation of pan CD3+ T cells and reduce the risk of cytokine release syndrome is to redirect specific subsets of T cells.
View Article and Find Full Text PDFBispecific antibodies represent an increasingly large fraction of biologics in therapeutic development due to their expanded scope in functional capabilities. Asymmetric monovalent bispecific IgGs (bsIgGs) have the additional advantage of maintaining a native antibody-like structure, which can provide favorable pharmacology and pharmacokinetic profiles. The production of correctly assembled asymmetric monovalent bsIgGs, however, is a complex engineering endeavor due to the propensity for non-cognate heavy and light chains to mis-pair.
View Article and Find Full Text PDFTo examine the widely accepted dogma that the eye is an immune-privileged organ that can suppress antigen immunogenicity, we explored systemic immune responses to a model vaccine antigen (tetanus toxoid) delivered to six compartments of the rodent eye (ocular surface, corneal stroma, anterior chamber, subconjunctival space, suprachoroidal space, vitreous body). We discovered that antigens delivered to corneal stroma induced enhanced, rather than suppressed, antigen-specific immune responses, which were 18- to 30-fold greater than conventional intramuscular injection and comparable to intramuscular vaccination with alum adjuvant. Systemic immune responses to antigen delivered to the other ocular compartments were much weaker.
View Article and Find Full Text PDFDespite success in vaccinating populations against SARS-CoV-2, concerns about immunity duration, continued efficacy against emerging variants, protection from infection and transmission, and worldwide vaccine availability remain. Molecular adjuvants targeting pattern recognition receptors (PRRs) on antigen-presenting cells (APCs) could improve and broaden the efficacy and durability of vaccine responses. Native SARS-CoV-2 infection stimulates various PRRs, including toll-like receptors (TLRs) and retinoic acid-inducible gene I (RIG-I)-like receptors.
View Article and Find Full Text PDFDespite recent success in vaccinating populations against SARS-CoV-2, concerns about immunity duration, continued efficacy against emerging variants, protection from infection and transmission, and worldwide vaccine availability, remain. Although mRNA, pDNA, and viral-vector based vaccines are being administered, no protein subunit-based SARS-CoV-2 vaccine is approved. Molecular adjuvants targeting pathogen-recognition receptors (PRRs) on antigen-presenting cells (APCs) could improve and broaden the efficacy and durability of vaccine responses.
View Article and Find Full Text PDFBackground: Human Mesenchymal stromal cells (hMSCs) from various tissue sources are widely investigated in clinical trials. These MSCs are often administered to patients immediately after thawing the cryopreserved product (out-of-thaw), yet little is known about the single-cell transcriptomic landscape and tissue-specific differences of out-of-thaw human MSCs.
Methods: 13 hMSC samples derived from 10 "healthy" donors were used to assess donor variability and tissue-of-origin differences in single-cell gene expression profiles.
Eliciting durable and protective T cell-mediated immunity in the respiratory mucosa remains a significant challenge. Polylactic-co-glycolic acid (PLGA)-based cationic pathogen-like particles (PLPs) loaded with TLR agonists mimic biophysical properties of microbes and hence, simulate pathogen-pattern recognition receptor interactions to safely and effectively stimulate innate immune responses. We generated micro particle PLPs loaded with TLR4 (glucopyranosyl lipid adjuvant, GLA) or TLR9 (CpG) agonists, and formulated them with and without a mucosal delivery enhancing carbomer-based nanoemulsion adjuvant (ADJ).
View Article and Find Full Text PDFMonoclonal antibodies (mAb) have had a transformative impact on treating cancers and immune disorders. However, their use is limited by high development time and monetary cost, manufacturing complexities, suboptimal pharmacokinetics, and availability of disease-specific targets. To address some of these challenges, we developed an entirely synthetic, multivalent, Janus nanotherapeutic platform, called Synthetic Nanoparticle Antibodies (SNAbs).
View Article and Find Full Text PDFAlthough the existing flu vaccines elicit strong antigen-specific antibody responses, they fail to provide effective, long term protection - partly due to the absence of robust cellular memory immunity. We hypothesized that co-administration of combination adjuvants, mirroring the flu-virus related innate signaling pathways, could elicit strong cellular immunity. Here, we show that the small molecule adjuvant R848 and the RNA adjuvant PUUC, targeting endosomal TLR7s and cytoplasmic RLRs respectively, when delivered together in polymer nanoparticles (NP), elicits a broadened immune responses in mouse bone marrow-derived dendritic cells (mBMDCs) and a synergistic response in both mouse and human plasmacytoid dendritic cells (pDCs).
View Article and Find Full Text PDFOrthopedic biomaterial-associated infections remain a major clinical challenge, with Staphylococcus aureus being the most common pathogen. S. aureus biofilm formation enhances immune evasion and antibiotic resistance, resulting in a local, indolent infection that can persist long-term without symptoms before eventual hardware failure, bone non-union, or sepsis.
View Article and Find Full Text PDFFor decades, cationic polymer nanoparticles have been investigated for nucleic acid delivery. Despite promising in vitro transfection results, most formulations have failed to translate into the clinic due to significant in vivo toxicity - especially when delivered intravenously. To address this significant problem, we investigated the detailed mechanisms that govern the complex in vivo systemic toxicity response to common polymeric nanoparticles.
View Article and Find Full Text PDFVaccines prevent 2-3 million childhood deaths annually; however, low vaccine efficacy and the resulting need for booster doses create gaps in immunization coverage. In this translational study, we explore the benefits of extended release of licensed vaccine antigens into skin to increase immune responses after a single dose in order to design improved vaccine delivery systems. By administering daily intradermal injections of inactivated polio vaccine according to six different delivery profiles, zeroth-order release over 28 days resulted in neutralizing antibody titers equivalent to two bolus vaccinations administered one month apart.
View Article and Find Full Text PDFDelayed union and nonunion are a significant concern in long bone fractures and spinal fusions. Treatment of nonunion often entails multiple revision surgeries that further increase the financial, physical, and emotional burden on patients. The optimal treatment strategy for nonunions remains unclear in many cases, and the risk of complications after revision procedures remains high.
View Article and Find Full Text PDFDiffuse large B-cell lymphoma (DLBCL) is a particularly aggressive cancer, impacting the lives of approximately 20,000 people annually in the United States. Elucidating cellular interactions that occur within the microenvironment of DLBCL tumors is crucial to the successful development of therapeutic strategies for this condition. As the in vivo microenvironment of DLBCL is quite complex and variable, in vitro platforms that can sufficiently recapitulate these multifaceted cellular interactions without introducing the complexities of in vivo systems are vital for understanding the pathophysiology of this disease.
View Article and Find Full Text PDFB cells play a major role in the adaptive immune response by producing antigen-specific antibodies against pathogens and imparting immunological memory. Following infection or vaccination, antibody-secreting B cells and memory B cells are generated in specialized regions of lymph nodes and spleens, called germinal centers. Here, we report a fully synthetic ex-vivo system that recapitulates the generation of antigen-specific germinal-center (GC) like B cells using material-surface driven polyvalent signaling.
View Article and Find Full Text PDFDespite initial remission after successful treatments, B lymphoma patients often encounter relapses and resistance causing high mortality. Thus, there is a need to develop therapies that prevent relapse by providing long-term protection and, ultimately, lead to functional cure. In this study, our goal was to develop a simple, clinically relevant, and easily translatable therapeutic vaccine that provides durable immune protection against aggressive B cell lymphoma and identify critical immune biomarkers that are predictive of long-term survival.
View Article and Find Full Text PDFLow-density lipoproteins (LDLs) are a class of nanocarriers for the targeted delivery of therapeutics into aberrant cells that overexpress the LDL receptor. A facile procedure is used for reconstituting the hydrophobic core of LDLs with a binary fatty acid mixture. Facilitated by the tumor targeting capability of the apolipoprotein, the reconstituted, drug-loaded LDLs can effectively target cancer cells that overexpress the LDL receptor while showing minor adverse impact on normal fibroblasts.
View Article and Find Full Text PDFDespite decades of research very few vaccine-adjuvants have received FDA approval. Two fundamental challenges plague clinical translation of vaccine-adjuvants: reducing acute toxicities that result from systemic diffusion of many soluble adjuvants, and delivering multiple adjuvants at the same time to mimic the synergistic immune-stimulation of pathogens, while being safe. In order to address these barriers, we evaluated combinations of four clinically relevant immune-agonists, specifically Toll-like receptor (TLR) ligands, using biodegradable, polymer microparticles.
View Article and Find Full Text PDFDespite significant efforts, development of clinically relevant prophylactic and therapeutic cancer vaccines has proven challenging. Cancer-associated antigens, which are often self-antigens, do not activate innate immune cells sufficiently, underscoring the need for codelivery of appropriate immune-stimulatory adjuvants. Recent research has underscored the need for biomaterial-based carriers for vaccine delivery, not only to target antigens and adjuvants to antigen-presenting cells or to create "depot" like systems but also to avoid acute systemic toxicity of molecular adjuvants that occurs when adjuvants are delivered in their "naked" form.
View Article and Find Full Text PDFIt is currently unknown whether and how mammalian pathogen recognition receptors (PRRs) respond to biophysical patterns of pathogen-associated molecular danger signals. Using synthetic pathogen-like particles (PLPs) that mimic physical properties of bacteria or large viruses, we have discovered that the quality and quantity of Toll-like receptor 9 (TLR9) signaling by CpG in mouse dendritic cells (mDCs) are uniquely dependent on biophysical attributes; specifically, the surface density of CpG and size of the presenting PLP. These physical patterns control DC programming by regulating the kinetics and magnitude of MyD88-IRAK4 signaling, NF-κB-driven responses, and STAT3 phosphorylation, which, in turn, controls differential T cell responses and in vivo immune polarization, especially T helper 1 (Th1) versus T helper 2 (Th2) antibody responses.
View Article and Find Full Text PDFDiffuse large B-cell lymphoma (DLBCL) is an aggressive cancer that affects ∼22 000 people in the United States yearly. Understanding the complex cellular interactions of the tumor microenvironment is critical to the success and development of DLBCL treatment strategies. In vitro platforms that successfully model the complex tumor microenvironment without introducing the variability of in vivo systems are vital for understanding these interactions.
View Article and Find Full Text PDFTargeted delivery systems for anticancer drugs are urgently needed to achieve maximum therapeutic efficacy by site-specific accumulation and thereby minimizing adverse effects resulting from systemic distribution of many potent anticancer drugs. We have prepared folate receptor-targeted magnetic liposomes loaded with doxorubicin, which are designed for tumor targeting through a combination of magnetic and biological targeting. Furthermore, these liposomes are designed for hyperthermia-induced drug release to be mediated by an alternating magnetic field and to be traceable by magnetic resonance imaging (MRI).
View Article and Find Full Text PDFSuccess of an immunotherapy for cancer often depends on the critical balance of T helper 1 (Th1) and T helper 2 (Th2) responses driven by antigen presenting cells, specifically dendritic cells (DCs). Th1-driven cytotoxic T cell (CTL) responses are key to eliminating tumor cells. It is well established that CpG oligonucleotides (ODN), a widely studied Toll-like receptor 9 (TLR9) agonist, used to enhance Th1 response, also induces high levels of the anti-inflammatory, Th2-promoting cytokine IL10, which could dampen the resulting Th1 response.
View Article and Find Full Text PDFIn this paper, we report single step synthesis of hydrophilic superparamagnetic magnetite nanoparticles by thermolysis of Fe(acac)3 and their characterization of the properties relevant to biomedical applications like hyperthermia and magnetic resonance imaging (MRI). Size and morphology of the particles were determined by Transmission electron microscopy (TEM) while phase purity and structure of the particles were identified by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Magnetic properties were evaluated using vibrating sample magnetometer (VSM) and superconducting quantum interference device (SQUID) measurements.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2010
Poly(NIPAAm)-CS based nanohydrogels (NHGs) and iron oxide (Fe(3)O(4)) magnetic nanoparticles encapsulated magnetic nanohydrogels (MNHGs) were synthesized by free radical polymerization of N-isopropylacrylamide (NIPAAm) at 60 degrees C in presence of chitosan (CS) in different feed ratios. The polymerization of NIPAAm and the presence of CS as well as Fe(3)O(4) in hydrogels were confirmed from Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD), respectively. (13)C solid state nuclear magnetic resonance (NMR) spectra clearly revealed the grafting of CS into poly(NIPAAm).
View Article and Find Full Text PDF