A critical investigation into arsenic uptake and transportation, its phytotoxic effects, and defense strategies including complex signaling cascades and regulatory networks in plants. The metalloid arsenic (As) is a leading pollutant of soil and water. It easily finds its way into the food chain through plants, more precisely crops, a common diet source for humans resulting in serious health risks.
View Article and Find Full Text PDFPopulation detonation and rapid industrialization are the major factors behind the reduction in cultivable land that affects crop production seriously. This situation is further being deteriorated due to the negative effects of abiotic stresses. Under such conditions, plant growth-promoting rhizobacteria (PGPR) are found to improve crop production which is essential for sustainable agriculture.
View Article and Find Full Text PDFThis study proposes a semi-parametric estimation method, Box-Cox power transformation unconditional quantile regression, to estimate the impact of changes in the distribution of the explanatory variables on the unconditional quantile of the outcome variable. The proposed method consists of running a nonlinear regression of the recentered influence function (RIF) of the outcome variable on the explanatory variables. We also show the asymptotic properties of the proposed estimator and apply the estimation method to address an existing puzzle in labor economics-why the 50th/10th percentile wage gap has been falling in the USA since the late 1980s.
View Article and Find Full Text PDFPhosphorus is a primary macronutrient required for normal plant health, metabolism and survival. It is present in soil in compound insoluble form for which plant cannot uptake it directly from the soil. Some phosphate solubilizing bacteria possess some important enzymes for phosphate solubilization as well as mineralization.
View Article and Find Full Text PDFMyo-inositol hexakisphosphate phosphohydrolases (i.e., phytases) are known to be a very important enzyme responsible for solubilization of insoluble phosphates.
View Article and Find Full Text PDFApplication of heavy metal resistant plant growth promoting rhizobacteria has an important role as they help to evade metal-induced toxicity in plants on one hand and enhance plant growth on the other. The present study is therefore focused on the characterization of a cadmium resistant bacterial strain isolated from heavy metal contaminated rhizospheric soil designated as S8. This S8 strain was selected in terms of cadmium resistance and plant growth promoting traits.
View Article and Find Full Text PDFUnlabelled: Bacteria-mediated plant growth promotion and bioremediation of heavy metal containing soil is a widely accepted eco-friendly method. The present study is aimed to screen out cadmium resistant bacterial strain from metal contaminated rice rhizosphere and evaluate its effects on the growth of rice seedlings under cadmium stress. Among four different isolates (designated as S1, S2, S3 and S5), the S2 isolate was screened on the basis of different PGP traits and multi heavy metal resistance (minimum inhibitory concentration for cadmium, lead and arsenic were 3500, 2500 and 1050 µg/ml respectively).
View Article and Find Full Text PDFAgricultural productivity is proven to be hampered by the synthesis of reactive oxygen species (ROS) and production of stress-induced ethylene under salinity stress. One-aminocyclopropane-1-carboxylic acid (ACC) is the direct precursor of ethylene synthesized by plants. Bacteria possessing ACC deaminase activity can use ACC as a nitrogen source preventing ethylene production.
View Article and Find Full Text PDFThe present study demonstrates the metal toxicity ameliorating and growth promoting abilities of three different bacterial isolates when applied to rice as host plant. The three bacterial strains included a cadmium resistant Ochrobactrum sp., a lead resistant Bacillus sp.
View Article and Find Full Text PDF