Publications by authors named "Pall Jens Reynisson"

Objective: Endoluminal visualization in virtual and video bronchoscopy lacks information about the surrounding structures, and the traditional 2 D axial, coronal and sagittal CT views can be difficult to interpret. To address this challenge, we previously introduced a novel visualization technique, Anchored to Centerline Curved Surface, for navigated bronchoscopy. The current study compares the ACCuSurf to the standard ACS CT views as planning and guiding tools in a phantom study.

View Article and Find Full Text PDF

Objective: In flexible endoscopy techniques, such as bronchoscopy, there is often a challenge visualizing the path from start to target based on preoperative data and accessing these during the procedure. An example of this is visualizing only the inside of central airways in bronchoscopy. Virtual bronchoscopy (VB) does not meet the pulmonologist's need to detect, define and sample the frequent targets outside the bronchial wall.

View Article and Find Full Text PDF

Introduction: Our motivation is increased bronchoscopic diagnostic yield and optimized preparation, for navigated bronchoscopy. In navigated bronchoscopy, virtual 3D airway visualization is often used to guide a bronchoscopic tool to peripheral lesions, synchronized with the real time video bronchoscopy. Visualization during navigated bronchoscopy, the segmentation time and methods, differs.

View Article and Find Full Text PDF

Objectives: This paper describes a novel approach to determine structural changes in bone, muscle, and tendons using medical imaging, finite element models, and processing techniques to evaluate and quantify: (1) progression of atrophy in permanently lower motor neuron (LMN) denervated human muscles, and tendons; (2) their recovery as induced by functional electrical stimulation (FES); and (3) changes in bone mineral density and bone strength as effect of FES treatment.

Methods: Briefly, we used three-dimensional reconstruction of muscle belly, tendons, and bone images to study the structural changes occurring in these tissues in paralysed subjects after complete lumbar-ischiadic spinal cord injury (SCI). These subjects were recruited through the European project RISE, an endeavour designed to establish a novel clinical rehabilitation method for patients who have permanent and non-recoverable muscle LMN denervation in the lower extremities.

View Article and Find Full Text PDF

Muscle tissue composition accounting for the relative content of muscle fibers and intramuscular adipose and loose fibrous tissues can be efficiently analyzed and quantified using images from spiral computed tomography (S-CT) technology and the associated distribution of Hounsfield unit (HU) values. Muscle density distribution, especially when including the whole muscle volume, provides remarkable information on the muscle condition. Different physiological and pathological scenarios can be depicted using the muscle characterization technique based on the HU values and the definition of appropriate intervals and the association of such intervals to different colors.

View Article and Find Full Text PDF