Publications by authors named "Pall I Olason"

Article Synopsis
  • Migraine is a complicated neurovascular condition with varying symptoms, traditionally studied as a single type in genome-wide association studies (GWAS), but this research focuses on two main subtypes: migraine with aura (MA) and migraine without aura (MO).
  • The study analyzed large datasets from six European populations, identifying four new gene variants associated with MA and classifying 13 variants for MO, highlighting a significant frameshift variant in PRRT2 linked to MA and epilepsy.
  • Additionally, testing on rare variants showed that loss-of-function mutations in SCN11A provide strong protection against migraine, while another variant affecting KCNK5 offers large protection against both migraine and brain aneurysms, suggesting new avenues for treatment.
View Article and Find Full Text PDF

High-throughput proteomics platforms measuring thousands of proteins in plasma combined with genomic and phenotypic information have the power to bridge the gap between the genome and diseases. Here we performed association studies of Olink Explore 3072 data generated by the UK Biobank Pharma Proteomics Project on plasma samples from more than 50,000 UK Biobank participants with phenotypic and genotypic data, stratifying on British or Irish, African and South Asian ancestries. We compared the results with those of a SomaScan v4 study on plasma from 36,000 Icelandic people, for 1,514 of whom Olink data were also available.

View Article and Find Full Text PDF

Microsatellites are polymorphic tracts of short tandem repeats with one to six base-pair (bp) motifs and are some of the most polymorphic variants in the genome. Using 6084 Icelandic parent-offspring trios we estimate 63.7 (95% CI: 61.

View Article and Find Full Text PDF

Detailed knowledge of how diversity in the sequence of the human genome affects phenotypic diversity depends on a comprehensive and reliable characterization of both sequences and phenotypic variation. Over the past decade, insights into this relationship have been obtained from whole-exome sequencing or whole-genome sequencing of large cohorts with rich phenotypic data. Here we describe the analysis of whole-genome sequencing of 150,119 individuals from the UK Biobank.

View Article and Find Full Text PDF

Objectives: To find causal genes for rheumatoid arthritis (RA) and its seropositive (RF and/or ACPA positive) and seronegative subsets.

Methods: We performed a genome-wide association study (GWAS) of 31 313 RA cases (68% seropositive) and ~1 million controls from Northwestern Europe. We searched for causal genes outside the HLA-locus through effect on coding, mRNA expression in several tissues and/or levels of plasma proteins (SomaScan) and did network analysis (Qiagen).

View Article and Find Full Text PDF

Multiple myeloma (MM) is caused by the uncontrolled, clonal expansion of plasma cells. While there is epidemiological evidence for inherited susceptibility, the molecular basis remains incompletely understood. We report a genome-wide association study totalling 5,320 cases and 422,289 controls from four Nordic populations, and find a novel MM risk variant at SOHLH2 at 13q13.

View Article and Find Full Text PDF
Article Synopsis
  • * There are suggestions that it may be related to viral infections causing inflammation and nerve compression, alongside a genetic link with heritability estimates of 4-14%.
  • * A recent meta-analysis of genome-wide studies identified a specific genetic variant (rs9357446-A) associated with Bell's palsy, hinting at possible shared mechanisms with intervertebral disc disorders.
View Article and Find Full Text PDF

The success of genome-wide association studies (GWAS) in identifying common, low-penetrance variant-cancer associations for the past decade is undisputed. However, discovering additional high-penetrance cancer mutations in unknown cancer predisposing genes requires detection of variant-cancer association of ultra-rare coding variants. Consequently, large-scale next-generation sequence data with associated phenotype information are needed.

View Article and Find Full Text PDF

Whole-genome sequencing (WGS) is a fundamental technology for research to advance precision medicine, but the limited availability of portable and user-friendly workflows for WGS analyses poses a major challenge for many research groups and hampers scientific progress. Here we present Sarek, an open-source workflow to detect germline variants and somatic mutations based on sequencing data from WGS, whole-exome sequencing (WES), or gene panels. Sarek features (i) easy installation, (ii) robust portability across different computer environments, (iii) comprehensive documentation, (iv) transparent and easy-to-read code, and (v) extensive quality metrics reporting.

View Article and Find Full Text PDF

The number of national reference populations that are whole-genome sequenced are rapidly increasing. Partly driving this development is the fact that genetic disease studies benefit from knowing the genetic variation typical for the geographical area of interest. A whole-genome sequenced Swedish national reference population (n = 1000) has been recently published but with few samples from northern Sweden.

View Article and Find Full Text PDF

Whole-genome sequencing is a promising approach for human autosomal dominant disease studies. However, the vast number of genetic variants observed by this method constitutes a challenge when trying to identify the causal variants. This is often handled by restricting disease studies to the most damaging variants, e.

View Article and Find Full Text PDF

Speciation is a continuous process during which genetic changes gradually accumulate in the genomes of diverging species. Recent studies have documented highly heterogeneous differentiation landscapes, with distinct regions of elevated differentiation ("differentiation islands") widespread across genomes. However, it remains unclear which processes drive the evolution of differentiation islands; how the differentiation landscape evolves as speciation advances; and ultimately, how differentiation islands are related to speciation.

View Article and Find Full Text PDF

The medieval Norsemen or Vikings had an important biological and cultural impact on many parts of Europe through raids, colonization and trade, from about AD 793 to 1066. To help understand the genetic affinities of the ancient Norsemen, and their genetic contribution to the gene pool of other Europeans, we analysed DNA markers in Late Iron Age skeletal remains from Norway. DNA was extracted from 80 individuals, and mitochondrial DNA polymorphisms were detected by next-generation sequencing.

View Article and Find Full Text PDF

Profound knowledge of demographic history is a prerequisite for the understanding and inference of processes involved in the evolution of population differentiation and speciation. Together with new coalescent-based methods, the recent availability of genome-wide data enables investigation of differentiation and divergence processes at unprecedented depth. We combined two powerful approaches, full Approximate Bayesian Computation analysis (ABC) and pairwise sequentially Markovian coalescent modeling (PSMC), to reconstruct the demographic history of the split between two avian speciation model species, the pied flycatcher and collared flycatcher.

View Article and Find Full Text PDF

: Analyzing and storing data and results from next-generation sequencing (NGS) experiments is a challenging task, hampered by ever-increasing data volumes and frequent updates of analysis methods and tools. Storage and computation have grown beyond the capacity of personal computers and there is a need for suitable e-infrastructures for processing. Here we describe UPPNEX, an implementation of such an infrastructure, tailored to the needs of data storage and analysis of NGS data in Sweden serving various labs and multiple instruments from the major sequencing technology platforms.

View Article and Find Full Text PDF

Unravelling the genomic landscape of divergence between lineages is key to understanding speciation. The naturally hybridizing collared flycatcher and pied flycatcher are important avian speciation models that show pre- as well as postzygotic isolation. We sequenced and assembled the 1.

View Article and Find Full Text PDF

Effects of susceptibility variants may depend on from which parent they are inherited. Although many associations between sequence variants and human traits have been discovered through genome-wide associations, the impact of parental origin has largely been ignored. Here we show that for 38,167 Icelanders genotyped using single nucleotide polymorphism (SNP) chips, the parental origin of most alleles can be determined.

View Article and Find Full Text PDF

Uncertainty about the phase of strings of SNPs creates complications in genetic analysis, although methods have been developed for phasing population-based samples. However, these methods can only phase a small number of SNPs effectively and become unreliable when applied to SNPs spanning many linkage disequilibrium (LD) blocks. Here we show how to phase more than 1,000 SNPs simultaneously for a large fraction of the 35,528 Icelanders genotyped by Illumina chips.

View Article and Find Full Text PDF

Deletions within the neurexin 1 gene (NRXN1; 2p16.3) are associated with autism and have also been reported in two families with schizophrenia. We examined NRXN1, and the closely related NRXN2 and NRXN3 genes, for copy number variants (CNVs) in 2977 schizophrenia patients and 33 746 controls from seven European populations (Iceland, Finland, Norway, Germany, The Netherlands, Italy and UK) using microarray data.

View Article and Find Full Text PDF

We have developed an integrative analysis method combining genetic interactions, identified using type 1 diabetes genome scan data, and a high-confidence human protein interaction network. Resulting networks were ranked by the significance of the enrichment of proteins from interacting regions. We identified a number of new protein network modules and novel candidate genes/proteins for type 1 diabetes.

View Article and Find Full Text PDF

Alternative premessenger RNA splicing enables genes to generate more than one gene product. Splicing events that occur within protein coding regions have the potential to alter the biological function of the expressed protein and even to create new protein functions. Alternative splicing has been suggested as one explanation for the discrepancy between the number of human genes and functional complexity.

View Article and Find Full Text PDF

We performed a systematic, large-scale analysis of human protein complexes comprising gene products implicated in many different categories of human disease to create a phenome-interactome network. This was done by integrating quality-controlled interactions of human proteins with a validated, computationally derived phenotype similarity score, permitting identification of previously unknown complexes likely to be associated with disease. Using a phenomic ranking of protein complexes linked to human disease, we developed a Bayesian predictor that in 298 of 669 linkage intervals correctly ranks the known disease-causing protein as the top candidate, and in 870 intervals with no identified disease-causing gene, provides novel candidates implicated in disorders such as retinitis pigmentosa, epithelial ovarian cancer, inflammatory bowel disease, amyotrophic lateral sclerosis, Alzheimer disease, type 2 diabetes and coronary heart disease.

View Article and Find Full Text PDF

Using the Distributed Annotation System (DAS) we have created a protein annotation resource available at our web page: http://www.cbs.dtu.

View Article and Find Full Text PDF