We use our recent electric dipole moment (EDM) measurement data to constrain the possibility that the HfF^{+} EDM oscillates in time due to interactions with candidate dark matter axionlike particles (ALPs). We employ a Bayesian analysis method which accounts for both the look-elsewhere effect and the uncertainties associated with stochastic density fluctuations in the ALP field. We find no evidence of an oscillating EDM over a range spanning from 27 nHz to 400 mHz, and we use this result to constrain the ALP-gluon coupling over the mass range 10^{-22}-10^{-15} eV.
View Article and Find Full Text PDFSuperconducting qubits are a leading platform for scalable quantum computing and quantum error correction. One feature of this platform is the ability to perform projective measurements orders of magnitude more quickly than qubit decoherence times. Such measurements are enabled by the use of quantum-limited parametric amplifiers in conjunction with ferrite circulators-magnetic devices which provide isolation from noise and decoherence due to amplifier backaction.
View Article and Find Full Text PDFThe manipulation of quantum states of light holds the potential to enhance searches for fundamental physics. Only recently has the maturation of quantum squeezing technology coincided with the emergence of fundamental physics searches that are limited by quantum uncertainty. In particular, the quantum chromodynamics axion provides a possible solution to two of the greatest outstanding problems in fundamental physics: the strong-CP (charge-parity) problem of quantum chromodynamics and the unknown nature of dark matter.
View Article and Find Full Text PDFWe report on the first results from a new microwave cavity search for dark matter axions with masses above 20 μeV. We exclude axion models with two-photon coupling g_{aγγ}≳2×10^{-14} GeV^{-1} over the range 23.55