The increasing interest in hadron therapy has heightened the need for accurate and reliable methods to assess radiation quality and the biological effectiveness of particles used in treatment. Microdosimetry has emerged as a key tool for this, demonstrating its potential, reliability, and suitability. In this context, solid-state microdosimeters offer technological advantages over traditional tissue-equivalent proportional counters, and recent advancements have further improved their performance and reliability.
View Article and Find Full Text PDFThe colocation of elemental species with host biomolecules such as lipids and metabolites may shed new light on the dysregulation of metabolic pathways and how these affect disease pathogeneses. Alkali metals have been the subject of extensive research, are implicated in various neurodegenerative and infectious diseases and are known to disrupt lipid metabolism. Desorption electrospray ionisation (DESI) is a widely used approach for molecular imaging, but previous work has shown that DESI delocalises ions such as potassium (K) and chlorine (Cl), precluding the subsequent elemental analysis of the same section of tissue.
View Article and Find Full Text PDFCharacterizing proton beam damage in biological materials is of interest to enable the integration of proton microprobe elemental mapping techniques with other imaging modalities. It is also of relevance to obtain a deeper understanding of mechanical damage to lipids in tissues during proton beam cancer therapy. We have developed a novel strategy to characterize proton beam damage to lipids in biological tissues based on mass spectrometry imaging.
View Article and Find Full Text PDFElemental imaging is widely used for imaging cells and tissues but rarely in combination with organic mass spectrometry, which can be used to profile lipids and measure drug concentrations. Here, we demonstrate how elemental imaging and a new method for spatially resolved lipidomics (DAPNe-LC-MS, based on capillary microsampling and liquid chromatography mass spectrometry) can be used in combination to probe the relationship between metals, drugs, and lipids in discrete areas of tissues. This new method for spatial lipidomics, reported here for the first time, has been applied to rabbit lung tissues containing a lesion (caseous granuloma) caused by tuberculosis infection.
View Article and Find Full Text PDFElemental and molecular imaging play a crucial role in understanding disease pathogenesis. To accurately correlate elemental and molecular markers, it is desirable to perform sequential elemental and molecular imaging on a single-tissue section. However, very little is known about the impact of performing these measurements in sequence.
View Article and Find Full Text PDFPaper spray mass spectrometry is a rapid and sensitive tool for explosives detection but has so far only been demonstrated using high resolution mass spectrometry, which bears too high a cost for many practical applications. Here we explore the potential for paper spray to be implemented in field applications with portable mass spectrometry. This involved (a) replacing the paper substrate with a swabbing material (which we call "swab spray") for compatibility with standard collection materials; (b) collection of explosives from surfaces; (c) an exploration of interferences within a ± 0.
View Article and Find Full Text PDFThe finding that drugs and metabolites can be detected from fingerprints is of potential relevance to forensic science and as well as toxicology and clinical testing. However, discriminating between dermal contact and ingestion of drugs has never been verified experimentally. The inability to interpret the result of finding a drug or metabolite in a fingerprint has prevented widespread adoption of fingerprints in drug testing and limits the probative value of detecting drugs in fingermarks.
View Article and Find Full Text PDFDirect analyte-probed nanoextraction (DAPNe) is a technique that allows extraction of drug and endogenous compounds from a discrete location on a tissue sample using a nano capillary filled with solvent. Samples can be extracted from spot diameters as low as 6 μm. Studies previously undertaken by our group have shown that the technique can provide good precision (5%) for analyzing drug molecules in 150 μm diameter areas of homogenized tissue, provided an internal standard is sprayed on to the tissue prior to analysis.
View Article and Find Full Text PDFRationale: Paper spray offers a rapid screening test without the need for sample preparation. The incomplete extraction of paper spray allows for further testing using more robust, selective and sensitive techniques such as liquid chromatography/mass spectrometry (LC/MS). Here we develop a two-step process of paper spray followed by LC/MS to (1) rapidly screen a large number of samples and (2) confirm any disputed results.
View Article and Find Full Text PDFBackground: Paper spray mass spectrometry (PS-MS) is a technique that has recently emerged and has shown excellent analytical sensitivity to a number of drugs in blood. As an alternative to blood, fingerprints have been shown to provide a noninvasive and traceable sampling matrix. Our goal was to validate the use of fingerprint samples to detect cocaine use.
View Article and Find Full Text PDFThere are many possible biomedical applications for titania nanoparticles (NPs) doped with rare earth elements (REEs), from dose enhancement and diagnostic imaging in radiotherapy, to biosensing. However, there are concerns that the NPs could disintegrate in the body thus releasing toxic REE ions to undesired locations. As a first step, we investigate how accurately the Ti/REE ratio from the NPs can be measured inside human cells.
View Article and Find Full Text PDFRadiat Environ Biophys
November 2013
A "broadbeam" facility is demonstrated for the vertical microbeam at Surrey's Ion Beam Centre, validating the new technique used by Barazzuol et al. (Radiat Res 177:651-662, 2012). Here, droplets with a diameter of about 4 mm of 15,000 mammalian cells in suspension were pipetted onto defined locations on a 42-mm-diameter cell dish with each droplet individually irradiated in "broadbeam" mode with 2 MeV protons and 4 MeV alpha particles and assayed for clonogenicity.
View Article and Find Full Text PDFThe Surrey vertical beam is a new facility for targeted irradiation of cells in medium with singly counted ions. A duo-plasmatron ion source and a 2 MV Tandem™ accelerator supply a range of ions from protons to calcium for this beamline and microscope endstation, with energy ranges from 0.5 to 12 MeV.
View Article and Find Full Text PDFA simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Si(n)(-) and Cu(n)(-). Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.
View Article and Find Full Text PDF