We have developed a laser system with a combination of record-breaking parameters for rod ytterbium-doped yttrium aluminum garnet (Yb:YAG) lasers with pulse energy 20 mJ, average power 30 W, and beam quality М< 1.35. This record was achieved thanks to the Yb:YAG diverging beam amplifier (DBA) geometry, which allows combining efficient amplification with high average power, good beam quality, and high-energy pulse extraction.
View Article and Find Full Text PDFSingle-crystal silicon is one of the most promising materials for producing test masses for the new generation of laser interferometers intended for the detection of gravitational waves. We studied the thermally induced depolarization of radiation in single-crystal silicon with [001] orientation at a wavelength of 1940 nm at room temperature. The value of the piezo-optical anisotropy ratio was found to be ξ = -0.
View Article and Find Full Text PDFThermo-optical properties of several () ceramic samples were investigated in this Letter. The linear absorption and thermal conductivity coefficients, as well as the power dependence of thermally induced phase and polarization distortions of laser radiation, were measured. In addition, the effective thermo-optical constants and were estimated.
View Article and Find Full Text PDFA cycle of works on manufacturing and studying laser and magnetooptical ceramics with a focus on their thermo-optical characteristics performed by the research team is analyzed. Original results that have not been published before such as measurements of the Verdet constant in the Zr:TAG, Re:MgAlO, and ZnAlO ceramics are also presented.
View Article and Find Full Text PDFWe search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 dataset. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks, and, for the first time, kink-kink collisions. A template-based search for short-duration transient signals does not yield a detection.
View Article and Find Full Text PDFProspects for using ZnSe polycrystals synthesized by the chemical vapor deposition (CVD) method for the development of Faraday isolators for high-power radiation at a wavelength of 1076 nm are investigated. A Faraday isolator was built by a conventional scheme for room temperature operation. No thermally induced depolarization was observed in the device for the laser power range up to 1270 W, which is the main limiting factor for powerful isolators.
View Article and Find Full Text PDFWe present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is binary neutron star, neutron star-black hole, and binary black hole systems.
View Article and Find Full Text PDFThe recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in the presence of matter. In this Letter, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime.
View Article and Find Full Text PDFWe have created the first high-power Faraday isolator on an anisotropic magneto-optical element (MOE). The isolator is based on one MOE of a uniaxial CeF crystal and ensures an isolation degree of 30 dB at a high average laser radiation power of 700 W. The limitations due to the anisotropic nature of the crystal do not impose significantly more stringent requirements, either for the beam or the MOE.
View Article and Find Full Text PDFWe analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: an overall amplitude, a saturation frequency, and a spectral index.
View Article and Find Full Text PDFWe present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2 M_{⊙}-1.0 M_{⊙} using data taken between September 12, 2015 and January 19, 2016.
View Article and Find Full Text PDFOn 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii.
View Article and Find Full Text PDFThe method of self-propagating high-temperature synthesis of submicron powders with subsequent vacuum sintering was used to produce a series of optical ceramics based on dysprosium oxide (DyYLa)O, where x=0.7, 0.85, and 0.
View Article and Find Full Text PDFThe concept of a high-power thin-rod Yb:YAG laser amplifier with high-brightness diode pumping was proposed. The principle of the amplifier parameter variation aimed at achieving an efficient signal gain at different power levels was developed. Three versions of thin-rod gain modules were implemented, where small and strong signal gains were studied experimentally.
View Article and Find Full Text PDFA Faraday isolator (FI) with depolarization compensation using a counterrotation scheme has been realized in experiment for the first time, to the best of our knowledge. It is based on terbium scandium aluminum garnet crystals with negative optical anisotropy parameters. An order of magnitude advantage over the traditional FI scheme is achieved in this case.
View Article and Find Full Text PDFThe detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources.
View Article and Find Full Text PDFWe present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy.
View Article and Find Full Text PDFThe LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations.
View Article and Find Full Text PDFOn August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.
View Article and Find Full Text PDFTwo multi-pass optical schemes of a disk laser amplifier have been proposed. Different variants of both the schemes with the smallest amount of optical elements and a lens in the active element taken into account have been calculated. For 64 passes of radiation through the active element, the average power of ∼50 W with ∼10% optical-to-optical efficiency in a pulse-periodic regime with a repetition rate of 10 kHz and a pulse duration of 2 ns was obtained at the amplifier output.
View Article and Find Full Text PDFOn August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.
View Article and Find Full Text PDF