Because of extraordinary optoelectronic properties, two-dimensional (2D) materials are the subject of intense study in recent times. Hence, we investigate sub-wavelength dipole cavities (hole array) as a sensing platform for the detection of 2D reduced graphene oxide (r-GO) using terahertz time-domain spectroscopy (THz-TDS). The r-GO is obtained by reducing graphene oxide (GO) via Hummer's method.
View Article and Find Full Text PDFInteractions of terahertz radiations with matter can lead to the realization of functional devices related to sensing, high-speed communications, non-destructive testing, spectroscopy, etc In spite of the versatile applications that THz can offer, progress in this field is still suffering due to the dearth of suitable responsive materials. In this context, we have experimentally investigated emerging multiferroic BiFeO3 film (∼200 nm) employing terahertz time-domain spectroscopy (THz-TDS) under vertically applied (THz propagation in the same direction) electric fields. Our experiments reveal dynamic modulation of THz amplitude (up to about 7% within 0.
View Article and Find Full Text PDFWe present the first observation of dynamically modulated quantum phase transition between two distinct charge density wave (CDW) phases in two-dimensional 2H-NbSe_{2}. There is recent spectroscopic evidence for the presence of these two quantum phases, but its evidence in bulk measurements remained elusive. We studied suspended, ultrathin 2H-NbSe_{2} devices fabricated on piezoelectric substrates-with tunable flakes thickness, disorder level, and strain.
View Article and Find Full Text PDF