The sustainable utilization of waste cooking oil (WCO) as an alternative to fossil fuels has gained considerable attention due to its potential for delivering substantial environmental and economic benefits. This research attempts to explore the impact of incorporating aluminum oxide nanoparticles (AONP) into WCO on the emissions, combustion characteristics, and overall performance of a single-cylinder compression ignition (CI) engine. Comparative analyses were conducted against conventional commercial diesel fuel and pure WCO, as well as varying blends of WCO with AONP at 25 ppm, 50 ppm, and 75 ppm concentrations.
View Article and Find Full Text PDFIn building cooling, the demand for cooling surges during specific times, stressing air-conditioner operation, and additional cooling is often wasted during low-demand periods. Water-phase change material (W-PCM)-based thermal energy storage (TES) allows for load shifting and effective management of peak demand by storing cooling energy when the demand is low. This stored energy can be deployed during peak hours, decreasing energy usage and associated CO emissions.
View Article and Find Full Text PDFThe present work aims to investigate the effects of various additives on the stability of graphene nanoplatelet (GnP)-based nanofluid phase change material (NFPCM) for cold thermal energy storage (CTES). The NFPCMs are prepared by dispersing six different types of surfactants (anionic, cationic, and non-ionic types) in deionized (DI) water at a mass ratio of 1:0.5 GnP to surfactant.
View Article and Find Full Text PDF