Publications by authors named "Palacio-Castro A"

The effects of turbidity and sedimentation stress on early life stages of corals are poorly understood, particularly in Atlantic species. Dredging operations, beach nourishment, and other coastal construction activities can increase sedimentation and turbidity in nearby coral reef habitats and have the potential to negatively affect coral larval development and metamorphosis, reducing sexual reproduction success. In this study, we investigated the performance of larvae of the threatened Caribbean coral species Orbicella faveolata exposed to suspended sediments collected from a reef site in southeast Florida recently impacted by dredging (Port of Miami), and compared it to the performance of larvae exposed to sediments collected from the offshore, natal reef of the parent colonies.

View Article and Find Full Text PDF

As the balance between erosional and constructive processes on coral reefs tilts in favor of framework loss under human-induced local and global change, many reef habitats worldwide degrade and flatten. The resultant generation of coral rubble and the beds they form can have lasting effects on reef communities and structural complexity, threatening the continuity of reef ecological functions and the services they provide. To comprehensively capture changing framework processes and predict their evolution in the context of climate change, heavily colonized rubble fragments were exposed to ocean acidification (OA) conditions for 55 days.

View Article and Find Full Text PDF

Marine organisms are often subject to numerous anthropogenic stressors, resulting in widespread ecosystem degradation. Physiological responses to these stressors, however, are complicated by high biological variability, species-specific sensitivities, nonlinear relationships, and countless permutations of stressor combinations. Nevertheless, quantification of these relationships is paramount for parameterizing predictive tools and ultimately for effective management of marine resources.

View Article and Find Full Text PDF
Article Synopsis
  • Corals serve as key models for studying invertebrate host-microbe interactions, but to truly understand these relationships, experimental methods are needed to manipulate coral-bacteria associations.
  • The study used antibiotics to alter the bacterial communities in two coral species, measuring their effects on coral health through photosynthetic efficiency of algal symbionts and oxygen consumption rates over 5 days.
  • Results showed that while antibiotics changed bacterial diversity and decreased oxygen consumption, they didn't harm the photosynthetic efficiency of symbionts but increased the expression of immunity and stress genes in corals, highlighting the importance of native bacteria for coral health and providing a foundation for future research.
View Article and Find Full Text PDF

Climate change is radically altering coral reef ecosystems, mainly through increasingly frequent and severe bleaching events. Yet, some reefs have exhibited higher thermal tolerance after bleaching severely the first time. To understand changes in thermal tolerance in the eastern tropical Pacific (ETP), we compiled four decades of temperature, coral cover, coral bleaching, and mortality data, including three mass bleaching events during the 1982 to 1983, 1997 to 1998 and 2015 to 2016 El Niño heatwaves.

View Article and Find Full Text PDF

Coral reefs worldwide are threatened by thermal stress caused by climate change. Especially devastating periods of coral loss frequently occur during El Niño-Southern Oscillation (ENSO) events originating in the Eastern Tropical Pacific (ETP). El Niño-induced thermal stress is considered the primary threat to ETP coral reefs.

View Article and Find Full Text PDF