Publications by authors named "Palacin M"

MFN1 (mitofusin 1) and MFN2 are key players in mitochondrial fusion, endoplasmic reticulum (ER)-mitochondria juxtaposition, and macroautophagy/autophagy. However, the mechanisms by which these proteins participate in these processes are poorly understood. Here, we studied the interactomes of these two proteins by using CRISPR-Cas9 technology to insert an HA-tag at the C terminus of MFN1 and MFN2, and thus generating HeLa cell lines that endogenously expressed MFN1-HA or MFN2-HA.

View Article and Find Full Text PDF

synchrotron radiation-based techniques are a precious tool in battery research, as they enable the detection of metastable intermediates and ensure characterization under realistic cycling conditions. However, they do not come exempt of risks. The interaction between synchrotron radiation and samples, particularly within an active electrochemical cell, can induce relevant effects at the irradiated spot, potentially jeopardizing the experiment's reliability and biasing data interpretation.

View Article and Find Full Text PDF

Recent cryoEM studies elucidated details of the structural basis for the substrate selectivity and translocation of heteromeric amino acid transporters. However, Asc1/CD98hc is the only neutral heteromeric amino acid transporter that can function through facilitated diffusion, and the only one that efficiently transports glycine and D-serine, and thus has a regulatory role in the central nervous system. Here we use cryoEM, ligand-binding simulations, mutagenesis, transport assays, and molecular dynamics to define human Asc1/CD98hc determinants for substrate specificity and gain insights into the mechanisms that govern substrate translocation by exchange and facilitated diffusion.

View Article and Find Full Text PDF

Sarcopenia is a major contributor to disability in older adults, and thus, it is key to elucidate the mechanisms underlying its development. Increasing evidence suggests that impaired macroautophagy/autophagy contributes to the development of sarcopenia. However, the mechanisms leading to reduced autophagy during aging remain largely unexplored, and whether autophagy activation protects from sarcopenia has not been fully addressed.

View Article and Find Full Text PDF

Potassium manganese hexacianoferrate has been prepared by co-precipitation from manganese (II) chloride and potassium citrate, with chemical analysis yielding the formula K Mn[Fe(CN) ] □  ⋅ 1.1H O (KMnHCF). Its X-ray diffraction pattern is consistent with a monoclinic structure (space group P 2 /n, no.

View Article and Find Full Text PDF

In eukaryotic cells, different organelles interact at membrane contact sites stabilized by tethers. Mitochondrial mitofusin 2 (MFN2) acts as a membrane tether that interacts with an unknown partner on the endoplasmic reticulum (ER). In this work, we identified the splice variant ERMIT2 as the ER tethering partner of MFN2.

View Article and Find Full Text PDF

Synchrotron radiation based techniques are powerful tools for battery research and allow probing a wide range of length scales, with different depth sensitivities and spatial/temporal resolutions. experiments enable characterization during functioning of the cell and are thus a precious tool to elucidate the reaction mechanisms taking place. In this perspective, the current state of the art for the most relevant techniques (scattering, spectroscopy, and imaging) is discussed together with the bottlenecks to address, either specific for application in the battery field or more generic.

View Article and Find Full Text PDF

Some forms of mitochondrial dysfunction induce sterile inflammation through mitochondrial DNA recognition by intracellular DNA sensors. However, the involvement of mitochondrial dynamics in mitigating such processes and their impact on muscle fitness remain unaddressed. Here we report that opposite mitochondrial morphologies induce distinct inflammatory signatures, caused by differential activation of DNA sensors TLR9 or cGAS.

View Article and Find Full Text PDF

Magnesium batteries have attracted great attention as an alternative to Li-ion batteries but still suffer from limited choice of positive electrode materials. VO exhibits high theoretical capacities, but previous studies have been mostly limited to α-VO. Herein, we report on the β-VO polymorph as a Mg intercalation electrode.

View Article and Find Full Text PDF

How the complex environment of a membrane protein interplays with its structure and function is illustrated in the review by Jimenez-Munguia on interferon-induced transmembrane protein 3 (IFITM3), an antiviral protein that blocks fusion of the viral membrane with the host cell. In their review, they touch upon the possibility of IFITM3 adopting different topologies which overlays with the dependence of its activity on the local lipid composition of the membrane, thus making for an intricate mechanistic question which is yet to be understood in complete molecular detail.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) thermogenesis affects energy balance, and thereby it has the potential to induce weight loss and to prevent obesity. Here, we document a macroautophagic/autophagic-dependent mechanism of peroxisome proliferator-activated receptor gamma (PPARG) activity regulation that induces brown adipose differentiation and thermogenesis and that is mediated by TP53INP2. Disruption of TP53INP2-dependent autophagy reduced brown adipogenesis in cultured cells.

View Article and Find Full Text PDF

Heteromeric amino acid transporters (HATs) are one of the ten types of amino acid transporters present in the human body. Growing interest in the pathophysiological role of this group of transporters in rare and complex diseases and cancer has brought about the recent resolution of various structures of human HATs and bacterial homologues at atomic level. This knowledge sheds light on the mechanisms of transport used by these molecules.

View Article and Find Full Text PDF

Sarcopenia is one of the main factors contributing to the disability of aged people. Among the possible molecular determinants of sarcopenia, increasing evidences suggest that chronic inflammation contributes to its development. However, a key unresolved question is the nature of the factors that drive inflammation during aging and that participate in the development of sarcopenia.

View Article and Find Full Text PDF

Despite having similar structures, each member of the heteromeric amino acid transporter (HAT) family shows exquisite preference for the exchange of certain amino acids. Substrate specificity determines the physiological function of each HAT and their role in human diseases. However, HAT transport preference for some amino acids over others is not yet fully understood.

View Article and Find Full Text PDF

It is known that 4F2hc and rBAT are the heavy subunits of the heteromeric amino acid transporters (HATs). These heavy subunits are -glycosylated proteins, with an N-terminal domain, one transmembrane domain and a bulky extracellular domain (ectodomain) that belongs to the α-amylase family. The heavy subunits are covalently linked to a light subunit from the SLC7 family, which is responsible for the amino acid transport activity, forming a heterodimer.

View Article and Find Full Text PDF

The mammalian SLC7 family comprises the L-amino acid transporters (LATs) and the cationic amino acid transporters (CATs). The relevance of these transporters is highlighted by their involvement in several human pathologies, including inherited rare diseases and acquired diseases, such as cancer. In the last four years, several crystal or cryo-EM structures of LATs and CATs have been solved.

View Article and Find Full Text PDF

1D CaCo M O (M = Co = 0, M = Mn = 1, and M = Fe = 0.4) were prepared and tested electrochemically. While the iron-containing phase was not found to be active, the iron- and manganese-containing phases were found to be potentially interesting as positive electrode materials for calcium metal-based high-energy battery technologies and were investigated by synchrotron X-ray diffraction.

View Article and Find Full Text PDF

Objectives: The aim of this study was to trace contacts of coronavirus disease 2019 (COVID-19) hospitalised patients and determine the risk factors of infection in urban areas.

Study Design: Longitudinal analysis of contacts identified from index cases.

Methods: A contact tracing study was carried out in the Northern Metropolitan area of Barcelona, Spain, during the inter-epidemic lapse of May to July 2020, a period of low SARS-CoV-2 incidence.

View Article and Find Full Text PDF

Accounting for nearly two-thirds of known druggable targets, membrane proteins are highly relevant for cell physiology and pharmacology. In this regard, the structural determination of pharmacologically relevant targets would facilitate the intelligent design of new drugs. The structural biology of membrane proteins is a field experiencing significant growth as a result of the development of new strategies for structure determination.

View Article and Find Full Text PDF

In humans, more than 50 transporters are responsible for the traffic and balance of amino acids within and between cells and tissues, and half of them have been associated with disease [1]. Covering all common amino acids, Heteromeric Amino acid Transporters (HATs) are one class of such transporters. This review first highlights structural and functional studies that solved the atomic structure of HATs and revealed molecular clues on substrate interaction.

View Article and Find Full Text PDF

The currently emerging sodium-ion battery technology is in need of an optimized standard organic solvent electrolyte based on solid and directly comparable data. With this aim we have made a systematic study of "simple" electrolyte systems consisting of two sodium salts (NaTFSI and NaPF6) dissolved in three different alkyl carbonate solvents (EC, PC, DMC) within a wide range of salt concentrations and investigated: (i) their more macroscopic physico-chemical properties such as ionic conductivity, viscosity, thermal stability, and (ii) the molecular level properties such as ion-pairing and solvation. From this all electrolytes were found to have useful thermal operational windows and electrochemical stability windows, allowing for large scale energy storage technologies focused on load levelling or (to a less extent) electric vehicles, and ionic conductivities on par with analogous lithium-ion battery electrolytes, giving promise to also be power performant.

View Article and Find Full Text PDF

Sustainability combined with high energy density prospects makes Fe-based oxides attractive as cathodes for calcium rechargeable batteries. This work presents a DFT evaluation of the CaFe2+nO4+n (0 < n < 3) family, for which both the average intercalation voltage and the theoretical specific capacity decrease with the increasing n value. The term n = 1/4, Ca4Fe9O17, meets the most appealing characteristics: a calculated average voltage of 4.

View Article and Find Full Text PDF

Background: Cerebrospinal fluid (CSF) is mainly produced by the choroid plexus (CP) located in brain ventricles. Although derived from blood plasma, it is nearly protein-free (~ 250-fold less) and contains about 2-20-fold less free amino acids, with the exception of glutamine (Gln) which is nearly equal. The aim of this study was to determine which amino acid transporters are expressed in mouse CP epithelium in order to gain understanding about how this barrier maintains the observed amino acid concentration gradient.

View Article and Find Full Text PDF

This Review flows from past attempts to develop a (rechargeable) battery technology based on Ca via crucial breakthroughs to arrive at a comprehensive discussion of the current challenges at hand. The realization of a rechargeable Ca battery technology primarily requires identification and development of suitable electrodes and electrolytes, which is why we here cover the progress starting from the fundamental electrode/electrolyte requirements, concepts, materials, and compositions employed and finally a critical analysis of the state-of-the-art, allowing us to conclude with the particular roadblocks still existing. As for crucial breakthroughs, reversible plating and stripping of calcium at the metal-anode interface was achieved only recently and for very specific electrolyte formulations.

View Article and Find Full Text PDF