Publications by authors named "Pakwai Chan"

Article Synopsis
  • Near-surface air temperature (Tair) is essential for understanding urban heat and its effects on health, but traditional estimation methods often overlook the spatial differences in temperature.
  • This study introduces a federated learning artificial neural network (FLANN) framework that uses comprehensive thermal data from multiple satellite sources and weather stations to improve Tair prediction.
  • Compared to existing models, FLANN demonstrated significantly better accuracy with a high Pearson correlation coefficient (r = 0.98) and a low root mean square error (RMSE = 0.97 K), making it particularly effective for analyzing urban heat islands in cities like Hong Kong.
View Article and Find Full Text PDF

The identification of aviation hazardous winds is crucial and challenging in air traffic management for assuring flight safety, particularly during the take-off and landing phases. Existing criteria are typically tailored for special wind types, and whether there exists a universal feature that can effectively detect diverse types of hazardous winds from radar/lidar observations remains as an open question. Here we propose an interpretable semi-supervised clustering paradigm to solve this problem, where the prior knowledge and probabilistic models of winds are integrated to overcome the bottleneck of scarce labels (pilot reports).

View Article and Find Full Text PDF

The occurrence of wind shear and severe thunderstorms during the final approach phase contributes to nearly half of all aviation accidents. Pilots usually employ the go-around procedure in order to lower the likelihood of an unsafe landing. However, multiple factors influence the go-arounds induced by wind shear.

View Article and Find Full Text PDF

Regional chemical transport models (e.g., Community Multiscale Air Quality (CMAQ) Modeling System) are widely used to simulate the physical and chemical process of regional ozone (O) pollution and its variation trend in recent years.

View Article and Find Full Text PDF

The occurrence of severe low-level wind shear (S-LLWS) events in the vicinity of airport runways poses a significant threat to flight safety and exacerbates a burgeoning problem in civil aviation. Identifying the risk factors that contribute to occurrences of S-LLWS can facilitate the improvement of aviation safety. Despite the significant influence of S-LLWS on aviation safety, its occurrence is relatively infrequent in comparison to non-SLLWS incidents.

View Article and Find Full Text PDF

Aircraft landings are especially perilous when the wind is gusty near airport runways. For this reason, an aircraft may deviate from its glide slope, miss its approach, or even crash in the worst cases. In the study, we used the state-of-the-art glass-box model, the Explainable Boosting Machine (EBM), to estimate the variation in headwind speed and turbulence intensity along the airport runway glide slope and to interpret the various contributing factors.

View Article and Find Full Text PDF

Using surface air temperature observations from 1901 to 2020, this study compared the warming trends of Shanghai and Hong Kong over a period of 120 years. The statistical results reveal the following: (1) The average temperatures of the two cities underwent fluctuating increases during the past 120 years, with linear warming rates of 0.23 °C/decade in Shanghai and 0.

View Article and Find Full Text PDF

The outbreak of the 2019 novel coronavirus (COVID-19) had a large impact on human health and socio-economics worldwide. The lockdown implemented in China beginning from January 23, 2020 led to sharp reductions in human activities and associated emissions. The declines in primary pollution provided a unique opportunity to examine the relationship between anthropogenic emissions and air quality.

View Article and Find Full Text PDF

Dynamic calibration was performed in the laboratory on two catching-type drop counter rain gauges manufactured as high-sensitivity and fast response instruments by Ogawa Seiki Co. Ltd. (Japan) and the Chilbolton Rutherford Appleton Laboratory (UK).

View Article and Find Full Text PDF

Helical rolls are known to play a significant role in modulating both the mean and turbulence structure of the atmospheric boundary layer in tropical cyclones. However, in-situ measurements of these rolls have been limited due to safety restrictions. This study presents analyses of data collected by an aircraft operated by the Hong Kong Observatory in Typhoon Kalmaegi (1415) and Typhoon Nida (1604).

View Article and Find Full Text PDF

Aerosol pollution is closely related to meteorological conditions. In order to accurately evaluate the effectiveness of emission reduction policies, it is very important to separate meteorological effects from emissions in long-term PM changes. In this study, we used surface extinction coefficient (SEC) of aerosol particles as an indicator to estimate the long-term trend of PM pollutant conditions, and proposed a parameter surface ventilation index (SVI) to describe the atmospheric diffusion.

View Article and Find Full Text PDF

Both the effects of aerosol hygroscopicity and mixing state on aerosol optical properties were analyzed using ground-based measurements and a Mie model in this study. The sized-resolved particle hygroscopic growth factor at RH = 90% (Gf(90%)) and the enhancement factor for the scattering coefficients (f(RH)) were measured by a self-constructed Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA) and two nephelometers in parallel (PNEPs) respectively from 22nd February to 18th March 2014 in the Pearl River Delta, China. In addition, the particle number size distribution (PNSD) and BC mass concentration (M) were measured simultaneously.

View Article and Find Full Text PDF

Vehicular traffic has strong implication in the severity and degree of Urban Heat Island (UHI) effect in a city. It is crucial to map and monitor the spatio-temporal heat patterns from vehicular traffic in a city. Data observed from traffic counting stations are readily available for mapping the traffic-related heat across the stations.

View Article and Find Full Text PDF

Located in the Southern China monsoon region, pollution days in Pearl River Delta (PRD) were classified into "Western type", "Central type" or "Eastern type", with a relative percentage of 67%, 24% and 9%, respectively. Using this classification system, three typical pollution events were selected for numerical simulations using the WRF-Chem model. The source sensitivity method for anthropogenic emissions of PM and its precursors was applied to identify the source-receptor relationships for PM among 9 cities in PRD.

View Article and Find Full Text PDF

Unlabelled: This study focuses on the influences of a warm high-pressure meteorological system on aerosol pollutants, employing the simulations by the Models-3/CMAQ system and the observations collected during October 10-12, 2004, over the Pearl River Delta (PRD) region. The results show that the spatial distributions of air pollutants are generally circular near Guangzhou and Foshan, which are cities with high emissions rates. The primary pollutant is particulate matter (PM) over the PRD.

View Article and Find Full Text PDF