When culturing cells on flexible surfaces, it is important to consider extracellular matrix treatments that will remain on the surface under mechanical strain. Here we investigate differences in laminin deposited on oxidized polydimethylsiloxane (PDMS) with plasma treatment (plasma-only) vs. plasma and aminopropyltrimethoxysilane treatment (silane-linked).
View Article and Find Full Text PDFIn this work, empirical and analytical solutions of equibiaxial strain on a flexible substrate are derived for a dynamic cell culture system. The empirical formula, which fulfills the mechanistic conditions of the culture system, is based on a regression analysis from finite element analyses for a substrate undergoing large strains (<15%). The analytical (closed-form) solution is derived from the superposition of two elastic responses induced in the equibiaxial strain culture system after applying pressure to a substrate undergoing small strains (microstrains).
View Article and Find Full Text PDFJ Biomed Mater Res A
February 2010
Many methods exist in the literature to modify surfaces with extracellular matrix (ECM) proteins prior to cell seeding. However, there are few studies that systematically characterize and compare surface properties and cell response results among modification methods that use different bonding mechanisms. In this work, we compare cell response and physical characterization results from fibronectin or laminin attached to polydimethylsiloxane (PDMS) elastomer surfaces by physical adsorption, chemisorption, and covalent attachment to determine the best method to modify a deformable surface.
View Article and Find Full Text PDFNanometer sized silver particles were synthesized by inert gas condensation and co-condensation techniques. Both techniques are based on the evaporation of a metal into an inert atmosphere with the subsequent cooling for the nucleation and growth of the nanoparticles. The antibacterial efficiency of the nanoparticles was investigated by introducing the particles into a media containing Escherichia coli.
View Article and Find Full Text PDFIn biology, lipids are well known for their ability to assemble into spherical vesicles. Proteins, in particular virus capsids, can also form regular vesicle-like structures, where the precise folding and stable conformations of many identical subunits directs their self-assembly. Functionality present on these subunits also controls their disassembly within the cellular environment, for example, in response to a pH change.
View Article and Find Full Text PDFAmphiphilic, diblock copolypeptides of hydrophilic lysine or glutamic acid and hydrophobic leucine or valine have been observed to self-assemble into rigid hydrogels in aqueous solution at neutral pH and very low volume fraction of polymer, > or =0.5 wt % polypeptide. Laser scanning confocal microscopy and ultra small angle neutron scattering revealed a heterogeneous microstructure with distinct domains of hydrogel matrix and pure water pores.
View Article and Find Full Text PDFA general peptide design is presented that links the pH-dependent intramolecular folding of beta-hairpin peptides to their propensity to self-assemble, affording hydrogels rich in beta-sheet. Chemical responsiveness has been specifically engineered into the material by linking intramolecular folding to changes in solution pH, and mechanical responsiveness, by linking hydrogelation to self-assembly. Circular dichroic and infrared spectroscopies show that at low pH individual peptides are unstructured, affording a low-viscosity aqueous solution.
View Article and Find Full Text PDFProtein-based hydrogels are used for many applications, ranging from food and cosmetic thickeners to support matrices for drug delivery and tissue replacement. These materials are usually prepared using proteins extracted from natural sources, which can give rise to inconsistent properties unsuitable for medical applications. Recent developments have utilized recombinant DNA methods to prepare artificial protein hydrogels with specific association mechanisms and responsiveness to various stimuli.
View Article and Find Full Text PDF