Publications by authors named "Pakkakul Sangsuriya"

White spot syndrome virus (WSSV) presents a considerable peril to the aquaculture sector, leading to notable financial consequences on a global scale. Previous studies have identified hub proteins, including WSSV051 and WSSV517, as essential binding elements in the protein interaction network of WSSV. This work further investigates the functional structures and potential applications of WSSV hub complexes in managing WSSV infection.

View Article and Find Full Text PDF

As cellular chaperones, heat shock protein can facilitate viral infection in different steps of infection process. Previously, we have shown that the suppression of Litopenaeus vannamei (Lv)HSP90 not only results in a decline of white spot syndrome virus (WSSV) infection but also induces apoptosis in shrimp hemocyte cells. However, the mechanism underlying how LvHSP90 involved in WSSV infection remains largely unknown.

View Article and Find Full Text PDF

White spot syndrome virus (WSSV) is known to upregulate glycolysis to supply biomolecules and energy for the virus's replication. At the viral genome replication stage, lactate dehydrogenase (LDH), a glycolytic enzyme, shows increased activity without any increase in expression. In the present study, yeast 2-hybrid screening was used to identify WSSV proteins that interacted with LvLDH isoform 1 and 2, and these included the WSSV early protein WSSV004.

View Article and Find Full Text PDF

Aeromonas veronii is an emerging bacterial pathogen that causes serious systemic infections in cultured Nile tilapia (Oreochromis niloticus), leading to massive deaths. Therefore, there is an urgent need to identify effective vaccine candidates to control the spread of this emerging disease. TonB-dependent receptor (Tdr) of A.

View Article and Find Full Text PDF

Nervous necrosis virus (NNV) has spread throughout the world, affecting more than 120 freshwater and marine fish species. While vaccination effectively prevents disease outbreaks, the difficulty of producing sufficient viruses using cell lines continues to be a significant disadvantage for producing inactivated vaccines. This study, therefore, explored the application of synthetic peptides as potential vaccine candidates for the prevention of NNV in Asian seabass (Lates calcarifer).

View Article and Find Full Text PDF

Early disease prevention by vaccination requires understanding when fry fish develop specific immunity to a given pathogen. In this research, we explored the immune responses of Asian seabass (Lates calcarifer) at the stages of 35- and 42- days post-hatching (dph) to an immersive heat-killed Streptococcus iniae (Si) vaccine to determine whether fish can produce specific antibodies against the pathogen. The vaccinated fish of each stage (V35 and V42) were immersed with the Si vaccine at 10 CFU/ml for 3 h, whereas the control groups (C35 and C42) were immersed with tryptic soy broth (TSB) in the same manner.

View Article and Find Full Text PDF

Infectious spleen and kidney necrosis virus (ISKNV) is a causative agent of high mortality in fish resulting in significant economic loss to the fish industry in many countries. The major capsid protein (MCP) (ORF006) is an important structural component that mediates virus entry into the host cell, therefore it is a good candidate antigen of ISKNV for subunit vaccine development. In this study, MCP of ISKNV was successfully produced in Escherichia coli strain Ril and was purified as the soluble form by refolding recombinant MCP using urea in combination with dialysis process.

View Article and Find Full Text PDF
Article Synopsis
  • Tilapia lake virus (TiLV) is an emerging virus causing outbreaks in at least 16 countries on three continents (Asia, Africa, America) from 2014 to 2020, severely affecting the economy.
  • Researchers sequenced eight TiLV genomes from Thailand (2014-2019) and estimated that the virus originated between 2003 and 2009, before being first reported in Israel in 2014.
  • The global population of TiLV appears to have declined since 2016, potentially due to herd immunity in fish or improved importation protocols, emphasizing the need for better surveillance of the virus.
View Article and Find Full Text PDF

Long pepper ( Vahl) is a Thai medicinal herb which has been used as one of the common ingredients in variety of Thai foods. Here, we investigated antimicrobial activities of crude bioactive metabolites extracted from fruits of against 10 pathogenic organisms (bacteria and yeast) causing opportunistic infections in human or animals including ATCC6633, ATCC25923, ATCC2921, ATCC25922, TISTR1843, ATCC741, (clinical isolate), (XN98 and 5HP), and ATCC90020. The results of disk diffusion test showed that the extract from methanol solvent exhibited greater antibacterial activity than other solvents with inhibition zones ranging from 0.

View Article and Find Full Text PDF

Melanization, mediated by the prophenoloxidase (proPO)-activating system, is an important innate immune response in invertebrates. The implication of the proPO system in antiviral response and the suppression of host proPO activation by the viral protein have previously been demonstrated in shrimp. However, the molecular mechanism of viral-host interactions in the proPO cascade remains largely unexplored.

View Article and Find Full Text PDF

Hemocyte homeostasis-associated protein (PmHHAP) was first identified as a viral-responsive gene, due to a high upregulation in transcription following white spot syndrome virus (WSSV) infection. Functional studies using RNA interference have suggested that PmHHAP is involved in hemocyte homeostasis by controlling apoptosis during WSSV infection. In this study, the role of PmHHAP in host-viral interactions was further investigated.

View Article and Find Full Text PDF
Article Synopsis
  • AHPND in shrimp is caused by VP isolates containing a pVA plasmid that produces toxins PirA and PirB, essential for creating the lesions typical of the disease.
  • Isolate XN87 was found to lack these toxins, yet still induced 47% mortality in shrimp, demonstrating that some mutants can still cause disease without showing classic AHPND lesions.
  • Genetic analysis revealed that a mutation in the pVA plasmid of XN87 led to a frameshift, preventing the production of the toxins, highlighting the complexity of disease mechanisms in shrimp and potential for underrecognized pathogenicity.
View Article and Find Full Text PDF

Apoptosis is an essential mechanism in multicellular organisms which results in the induction of cell death. Important apoptotic proteins, including high temperature requirement A2 (PmHtrA2; also known as serine protease), inhibitor of apoptosis protein (PmIAP) and Pm caspase, have been previously identified in black tiger shrimp, Penaeus monodon. However, the relevance among these proteins in apoptosis regulation has not been established yet in shrimp.

View Article and Find Full Text PDF
Article Synopsis
  • Shewanella putrefaciens is increasingly found in marine and freshwater fish, necessitating cost-effective detection methods for monitoring this pathogen.
  • Our colorogenic LAMP assay with calcein allows for quick and visually identifiable detection of S. putrefaciens in cultured tilapia, achieving results in 45 minutes with significantly higher sensitivity than traditional PCR.
  • Analysis of 389 tilapia samples revealed a 35% infection rate, particularly in gonads and fertilized eggs, highlighting the risk of transmission to fry in breeding programs.
View Article and Find Full Text PDF

Background: RNA interference (RNAi) is a specific and effective approach for inhibiting viral replication by introducing double-stranded (ds)RNA targeting the viral gene. In this study, we employed a combinatorial approach to interfere multiple gene functions of white spot syndrome virus (WSSV), the most lethal shrimp virus, using a single-batch of dsRNA, so-called "multi-WSSV dsRNA." A co-cultivation of RNase-deficient E.

View Article and Find Full Text PDF

Pacifastin is a recently classified family of serine proteinase inhibitors that play essential roles in various biological processes, including in the regulation of the melanization cascade. Here, a novel pacifastin-related gene, termed PmPacifastin-like, was identified from a reverse suppression subtractive hybridization (SSH) cDNA library created from hemocytes of the prophenoloxidase PmproPO1/2 co-silenced black tiger shrimp Penaeus monodon. The full-length sequences of PmPacifastin-like and its homologue LvPacifastin-like from the Pacific white shrimp Litopenaeus vannamei were determined.

View Article and Find Full Text PDF

Melanization mediated by the prophenoloxidase (proPO) activating system is a rapid immune response used by invertebrates against intruding pathogens. Several masquerade-like and serine proteinase homologues (SPHs) have been demonstrated to play an essential role in proPO activation in insects and crustaceans. In a previous study, we characterized the masquerade-like SPH, PmMasSPH1, in the black tiger shrimp Penaeus monodon as a multifunctional immune protein based on its recognition and antimicrobial activity against the Gram-negative bacteria Vibrio harveyi.

View Article and Find Full Text PDF

Here we show that knockdown of laminin receptor (Lamr) with PvLamr dsRNA in the whiteleg shrimp Penaeus (Litopenaeus) vannamei (Pv) caused a dramatic reduction specifically in hyaline hemocytes prior to death. Since apoptosis was not detected in hemocytes or hematopoietic cells, other possible causes of hemocyte loss were investigated. Reports that suppression of crustacean hematopoietic factor (CHF)-like protein or hemocyte homeostasis-associated protein (HHAP) also reduced shrimp hemocyte counts led us to carry out yeast two-hybrid (Y2H) and co-immunoprecipitation (co-IP) assays to test for interactions between Lamr and Pv homologues to these proteins (PvCHF-like and PvHHAP).

View Article and Find Full Text PDF

White spot syndrome virus proteins WSSV134 and WSSV322 have been shown to bind with the p20 domain (residues 55-214) of Penaeus monodon caspase (PmCasp) protein through yeast two-hybrid screening. Binding was confirmed for the p20 domain and the full-length caspase by co-immunoprecipitation. WSSV134 is also known as the WSSV structural protein VP36A, but no function or conserved domains have been ascribed to WSSV322.

View Article and Find Full Text PDF

A novel G-protein pathway suppressor 2 (GPS2) has been identified from hemocytes of the whiteleg shrimp Penaeus vannamei (Pv) and appears to play a role in ecdysis. The full-length of PvGPS2 cDNA consisted of a 1230-bp open reading frame, encoding 409 deduced amino acids with significant sequence homology to GPS2 sequences of crustaceans and insects. RT-PCR revealed that PvGPS2 was expressed in all P.

View Article and Find Full Text PDF

White spot syndrome virus (WSSV) is currently the most serious global threat for cultured shrimp production. Although its large, double-stranded DNA genome has been completely characterized, most putative protein functions remain obscure. To provide more informative knowledge about this virus, a proteomic-scale network of WSSV-WSSV protein interactions was carried out using a comprehensive yeast two-hybrid analysis.

View Article and Find Full Text PDF

White spot syndrome virus (WSSV) is one of the most serious pathogens of penaeid shrimp. Although its genome has been completely characterized, the functions of most of its putative proteins are not yet known. It has been suggested that the major nucleocapsid protein VP15 is involved in packaging of the WSSV genome during virion formation.

View Article and Find Full Text PDF

A black tiger shrimp (Penaeus monodon) caspase cDNA homologue (PmCasp) has been identified from a hemocyte library using a previously identified caspase homologue from the banana shrimp (Penaeus merguiensis) as a probe. The full-length PmCasp was 1202bp with a 954bp open reading frame, encoding 317 amino acids. The deduced protein contained a potential active site (QACRG pentapeptide) conserved in most caspases.

View Article and Find Full Text PDF