The structure and electron emission properties of scanning tunneling microscope tips electrochemically etched from polycrystalline and recrystallized tungsten wires were investigated using scanning electron microscopy and transmission electron microscopy. Tips etched using the recrystallized wire had single crystal domains larger than those seen in tips etched from the cold drawn wire. The stability of the tips under high electric fields was investigated using field emission.
View Article and Find Full Text PDFBackground: Frozen embryo transfer (FET) is increasing in prevalence. In contrast to the amount of research performed on the actual cryopreservation procedure, there are limited data with respect to optimal endometrial preparation in FET cycles. Increasingly artificial cycle (AC) preparation is being adopted over the natural cycle (NC) to facilitate greater access to FET.
View Article and Find Full Text PDFPurpose: The purpose of this study is to investigate whether progesterone (P4) levels on the day of frozen-thawed embryo transfer (FET) to a hormonally prepared endometrium correlate with pregnancy outcomes.
Methods: This is a large retrospective cohort analysis comprising of N = 2010 FETs. In these cycles, P4 levels on the day of transfer were assessed in relation to pregnancy outcomes.
An ordered germanium terminated (1 0 0) diamond surface has been formed and characterised using a combination of low energy electron diffraction and synchrotron-based core level photoemission spectroscopy. A number of preparation methods are explored, in each case inducing a two domain [Formula: see text] surface reconstruction. The surface becomes saturated with bonded germanium such that each [Formula: see text] unit cell hosts 1.
View Article and Find Full Text PDFThe oxidation of the silicon terminated (1 0 0) diamond surface is investigated with a combination of high resolution photoelectron spectroscopy, low energy electron diffraction and near edge x-ray absorption fine structure spectroscopy. The effects of molecular [Formula: see text] and [Formula: see text] dosing under UHV conditions, as well as exposure to ambient conditions, have been explored. Our findings indicate that the choice of oxidant has little influence over the resulting surface chemistry, and we attribute approximately 85% of the surface oxygen to a peroxide-bridging arrangement.
View Article and Find Full Text PDFJ Phys Condens Matter
August 2016
Synchrotron-based photoelectron spectroscopy experiments are presented that address a long standing inconsistency in the treatment of the C1s core level of hydrogen terminated (1 0 0) diamond. Through a comparison of surface and bulk sensitive measurements we show that there is a surface related core level component to lower binding energy of the bulk diamond component; this component has a chemical shift of [Formula: see text] eV which has been attributed to carbon atoms which are part of the hydrogen termination. Additionally, our results indicate that the asymmetry of the hydrogen terminated (1 0 0) diamond C1s core level is an intrinsic aspect of the bulk diamond peak which we have attributed to sub-surface carbon layers.
View Article and Find Full Text PDFA combination of synchrotron-based x-ray spectroscopy and contact potential difference measurements have been used to examine the electronic structure of the (3 × 1) silicon terminated (100) diamond surface under ultra high vacuum conditions. An occupied surface state which sits 1.75 eV below the valence band maximum has been identified, and indications of mid-gap unoccupied surface states have been found.
View Article and Find Full Text PDFHydrogen-terminated diamond possesses due to transfer doping a quasi-two-dimensional (2D) hole accumulation layer at the surface with a strong, Rashba-type spin-orbit coupling that arises from the highly asymmetric confinement potential. By modulating the hole concentration and thus the potential using an electrostatic gate with an ionic-liquid dielectric architecture the spin-orbit splitting can be tuned from 4.6-24.
View Article and Find Full Text PDFFast and reliable DNA sequencing is a long-standing target in biomedical research. Recent advances in graphene-based electrical sensors have demonstrated their unprecedented sensitivity to adsorbed molecules, which holds great promise for label-free DNA sequencing technology. To date, the proposed sequencing approaches rely on the ability of graphene electric devices to probe molecular-specific interactions with a graphene surface.
View Article and Find Full Text PDFThe electronic structure of physisorbed molecules containing aromatic nitrogen heterocycles (triazine and melamine) on graphene is studied using a combination of electronic transport, X-ray photoemission spectroscopy and density functional theory calculations. The interfacial electronic structure and charge transfer of weakly coupled molecules on graphene is found to be governed by work function differences, molecular dipole moments and polarization effects. We demonstrate that molecular depolarization plays a significant role in these charge transfer mechanisms even at submonolayer coverage, particularly for molecules which possess strong dipoles.
View Article and Find Full Text PDFHydrogenated diamond possesses a unique surface conductivity as a result of transfer doping by surface acceptors. Yet, despite being extensively studied for the past two decades, little is known about the system at low temperature, particularly whether a two-dimensional hole gas forms at the diamond surface. Here we report that (100) diamond, when functionalized with hydrogen, supports a p-type spin-3/2 two-dimensional surface conductivity with a spin-orbit interaction of 9.
View Article and Find Full Text PDFIn this work we use high-resolution synchrotron-based photoelectron spectroscopy to investigate the low kinetic energy electron emission from two negative electron affinity surfaces of diamond, namely hydrogenated and lithiated diamond. For hydrogen-terminated diamond electron emission below the conduction band minimum (CBM) is clearly observed as a result of phonon emission subsequent to carrier thermalization at the CBM. In the case of lithiated diamond, we find the normal conduction band minimum emission peak is asymmetrically broadened to higher kinetic energies and argue the broadening is a result of ballistic emission from carriers thermalized to the CBM in the bulk well before the onset of band-bending.
View Article and Find Full Text PDFWe demonstrate a novel doping mechanism of silicon, namely n-type transfer doping by adsorbed organic cobaltocene (CoCp2*) molecules. The amount of transferred charge as a function of coverage is monitored by following the ensuing band bending via surface sensitive core-level photoelectron spectroscopy. The concomitant loss of electrons in the CoCp2* adlayer is quantified by the relative intensities of chemically shifted Co2p components in core-level photoelectron spectroscopy which correspond to charged and neutral molecules.
View Article and Find Full Text PDFThe interaction between zinc-tetraphenylporphyrin (ZnTPP) and fullerenes (C60 and C60F48) are studied using ultraviolet photoelectron spectroscopy (UPS) and scanning tunneling microscopy (STM). Low temperature STM reveals highly ordered ZnTPP monolayers on Au(111). In contrast to C60, a submonolayer coverage of C60F48 results in long-range disorder of the underlying single ZnTPP layer and distortion of individual ZnTPP molecules.
View Article and Find Full Text PDFControl over the quantum states of individual luminescent nitrogen-vacancy (NV) centres in nanodiamonds (NDs) is demonstrated by careful design of the crystal host: its size, surface functional groups, and interfacing substrate. By progressive etching of the ND host, the NV centres are induced to switch from latent, through continuous, to intermittent or "blinking" emission states. The blinking mechanism of the NV centre in NDs is elucidated and a qualitative model proposed to explain this phenomenon in terms of the centre electron(s) tunnelling to acceptor site(s).
View Article and Find Full Text PDFSurface sensitive C1s core level photoelectron spectroscopy was used to examine the electronic properties of C(60)F(48) molecules on the C(100):H surface. An upward band bending of 0.74 eV in response to surface transfer doping by fluorofullerene molecules is measured.
View Article and Find Full Text PDFNanotechnology
November 2009
Making use of focused Ga-ion beam (FIB) fabrication technology, the evolution with device dimension of the low-temperature electrical properties of Nb nanowires has been examined in a regime where crossover from Josephson-like to insulating behaviour is evident. Resistance-temperature data for devices with a physical width of order 100 nm demonstrate suppression of superconductivity, leading to dissipative behaviour that is shown to be consistent with the activation of phase-slip below T(c). This study suggests that by exploiting the Ga-impurity poisoning introduced by the FIB into the periphery of the nanowire, a central superconducting phase-slip nanowire with sub-10 nm dimensions may be engineered within the core of the nanowire.
View Article and Find Full Text PDFWe review progress at the Australian Centre for Quantum Computer Technology towards the fabrication and demonstration of spin qubits and charge qubits based on phosphorus donor atoms embedded in intrinsic silicon. Fabrication is being pursued via two complementary pathways: a 'top-down' approach for near-term production of few-qubit demonstration devices and a 'bottom-up' approach for large-scale qubit arrays with sub-nanometre precision. The 'top-down' approach employs a low-energy (keV) ion beam to implant the phosphorus atoms.
View Article and Find Full Text PDF