It has been implied that deregulation of cyclin D1 turnover under stresses can facilitate genomic instability and trigger tumorigenesis. Much focus has been placed on identifying the E3 ligases responsible for mediating cyclin D1 degradation. However, the findings were quite controversial and cell type-dependent.
View Article and Find Full Text PDFFront Cell Dev Biol
March 2016
The Golgi complex is decorated with so-called Golgin proteins that share a common feature: a large proportion of their amino acid sequences are predicted to form coiled-coil structures. The possible presence of extensive coiled coils implies that these proteins are highly elongated molecules that can extend a significant distance from the Golgi surface. This property would help them to capture or trap inbound transport vesicles and to tether Golgi mini-stacks together.
View Article and Find Full Text PDFThe Golgi is decorated with coiled-coil proteins that may extend long distances to help vesicles find their targets. GCC185 is a trans Golgi-associated protein that captures vesicles inbound from late endosomes. Although predicted to be relatively rigid and highly extended, we show that flexibility in a central region is required for GCC185’s ability to function in a vesicle tethering cycle.
View Article and Find Full Text PDFTransport vesicle tethers are proteins that link partner membranes together to permit subsequent SNARE protein pairing and fusion. Despite the identification of a relatively large number of tethering proteins, little is known about the precise mechanisms by which they act. Biochemical isolation of tethers permits direct analysis of their physical characteristics and molecular interactions.
View Article and Find Full Text PDFCell immortalization is regarded as an early and pre-requisite step in tumor development. Defining the specific genetic events involved in cell immortalization may provide insights into the early events of carcinogenesis. Nasopharyngeal carcinoma is common among the Southern Chinese population.
View Article and Find Full Text PDFEctopic expression of viral oncoproteins disrupts cellular functions and limits the value of many existing immortalization models as models for carcinogenesis, especially for cancers without definitive viral etiology. Our newly established telomerase-immortalized human esophageal epithelial cell line, NE2-hTERT, retained nearly-diploid and non-tumorigenic characteristics, but exhibited genetic and genomic alterations commonly found in esophageal cancer, including progressive loss of the p16(INK4a) alleles, upregulation of anti-apoptotic proteins, epithelial-mesenchymal transition, whole-chromosome 7 gain and duplicated 5q arm. Our data also revealed a novel positive regulation of p16(INK4a) on cyclin D1.
View Article and Find Full Text PDFBerberine is an active ingredient extracted from Coptidis rhizoma which has been used for centuries as a traditional Chinese medicine for treatment of inflammatory diseases. Recent studies have indicated that berberine has anticancer properties. Berberine arrested cell growth and inhibited cell migration in various cancer cell lines.
View Article and Find Full Text PDFInhibitor of differentiation or DNA binding (Id-1) is a helix-loop-helix protein that is over-expressed in many types of cancer including esophageal cancer. This study aims to investigate its effects on the phosphatidylinositol-3-kinase (PI3K)/Akt/ nuclear factor kappa B (NFkappaB) signaling pathway and the significance in protecting esophageal cancer cells against apoptosis. We found elevated expression of phosphorylated forms of Akt, glycogen synthase kinase 3beta and inhibitor of kappa B, as well as increased nuclear translocation of NFkappaB subunit p65 and NFkappaB DNA-binding activity, in esophageal cancer cells with stable ectopic Id-1 expression.
View Article and Find Full Text PDFThe helix-loop-helix protein inhibitor of differentiation and DNA binding (Id-1) is known to promote cellular proliferation in several types of human cancer. Although it has been reported that Id-1 is over-expressed in esophageal squamous cell carcinoma (ESCC), its function and signaling pathways in esophageal cancer are unknown. In our study, we investigated the direct effects of Id-1 on esophageal cancer cell growth by transfecting an Id-1 expression vector into an ESCC cell line (HKESC-3), which showed serum-dependent Id-1 expression.
View Article and Find Full Text PDF