Publications by authors named "Pajdo R"

Melatonin (MEL) is produced and secreted by the pineal gland as well as the small intestine, liver, retina, lymphocytes, and melanocytes in the skin in both experimental animals as well as in humans. While pineal and retinas MEL is closely related to the light/dark cycle, the production of MEL by other so called extrapineal tissues is independent of such circadian rhythm. Among the primary mechanisms of action of MEL in humans, the most important are interaction of MEL with specific receptors (M1, M2, M3) and the MEL 'scavenging' activity against the formation of free oxygen metabolites as a result of MEL's ability to transfer free electrons and stimulation of the expression of redox reaction enzymes.

View Article and Find Full Text PDF

Exposure to acidic gastric content due to malfunction of lower esophageal sphincter leads to acute reflux esophagitis (RE) leading to disruption of esophageal epithelial cells. Carbon monoxide (CO) produced by heme oxygenase (HMOX) activity or released from its donor, tricarbonyldichlororuthenium (II) dimer (CORM-2) was reported to protect gastric mucosa against acid-dependent non-steroidal anti-inflammatory drug-induced damage. Thus, we aimed to investigate if CO affects RE-induced esophageal epithelium lesions development.

View Article and Find Full Text PDF

Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are multifactorial, chronic, disabling, and progressive diseases characterised by cyclical nature, alternating between active and quiescent states. While the aetiology of IBD is not fully understood, this complex of diseases involve a combination of factors including the genetic predisposition and changes in microbiome as well as environmental risk factors such as high-fat and low-fibre diets, reduced physical activity, air pollution and exposure to various toxins and drugs such as antibiotics. The prevalence of both IBD and obesity is increasing in parallel, undoubtedly proving the existing interactions between these risk factors common to both disorders to unravel poorly recognized cell signaling and molecular alterations leading to human IBD.

View Article and Find Full Text PDF

Inflammatory bowel diseases (IBDs) are a group of disorders which include ulcerative colitis and Crohn's disease. Obesity is becoming increasingly more common among patients with inflammatory bowel disease and plays a role in the development and course of the disease. This is especially true in the case of Crohn's disease.

View Article and Find Full Text PDF

Background: Curcumin, a pleiotropic substance used for centuries in traditional medicine, exhibits antioxidant, anti-inflammatory and antiproliferative efficacy against various tumours, but the role of curcumin in gastroprotection is little studied. We determined the effect of curcumin against gastric haemorrhagic lesions induced by 75% ethanol and alterations in gastric blood flow (GBF) in rats with cyclooxygenase-1 (COX-1) and COX-2 activity inhibited by indomethacin, SC-560 or rofecoxib, inhibited NO-synthase activity, capsaicin denervation and blockade of TRPV1 receptors by capsazepine.

Methods: One hour after ethanol administration, the gastric mucosal lesions were assessed by planimetry, the GBF was examined by H gas clearance, plasma gastrin was determined by radioimmunoassay, and the gastric mucosal mRNA expression of Cdx-2, HIF-1α, HO-1 and SOD 2 was analysed by RT-PCR.

View Article and Find Full Text PDF

Background And Purpose: Carbon monoxide (CO), a gaseous mediator produced by haem oxygenases (HOs), has been shown to prevent stress-, ethanol-, aspirin- and alendronate-induced gastric damage; however, its role in gastric ulcer healing has not been fully elucidated. We investigated whether CO released from tricarbonyldichlororuthenium (II) dimer (CORM-2) can affect gastric ulcer healing and determined the mechanisms involved in this healing action.

Experimental Approach: Gastric ulcers were induced in Wistar rats by serosal application of acetic acid.

View Article and Find Full Text PDF

Stress is known to cause severe adverse effects in the human gastrointestinal tract including mucosal microbleedings and erosions or even gastric ulceration but the mechanism of these complications has not been fully elucidated. The pathogenesis of stress-induced gastric damage involves the fall in Gastric Blood Flow (GBF), an increase in gastric acid secretion and gastric motility, enhanced adrenergic and cholinergic nerve activity and the rise in gastric mucosal generation of reactive oxygen species. The gastric mucosal defense mechanisms against the deleterious effect of stress include the activation of the hypothalamic-pituitary-adrenal axis which has been linked with glucocorticoids release capable of counteracting of stress-induced gastric lesions.

View Article and Find Full Text PDF

Hydrogen sulfide (H₂S) is an endogenous mediator, synthesized from l-cysteine by cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) or 3-mercaptopyruvate sulfurtransferase (3-MST). The mechanism(s) involved in H₂S-gastroprotection against ischemia/reperfusion (I/R) lesions and their time-dependent progression into deeper gastric ulcerations have been little studied. We determined the effect of l-cysteine, H₂S-releasing NaHS or slow H₂S releasing compound GYY4137 on gastric blood flow (GBF) and gastric lesions induced by 30 min of I followed by 3, 6, 24 and 48 h of R.

View Article and Find Full Text PDF

Carbon monoxide (CO) is a physiological gaseous mediator recently implicated in the mechanism of gastric mucosal defense due to its vasodilatory and antioxidative properties. Small quantities of endogenous CO are produced during heme degradation by heme oxygenase (HO-1), however, the involvement of the capsaicin-sensitive afferent neurons releasing calcitonin gene related peptide (CGRP) and anti-oxidative factors and mechanisms in the CO-induced gastroprotection against stress ulcerogenesis has been little studied. We investigated the possible role of CO released from the CO donor, tricarbonyldichlororuthenium (II) dimer (CORM-2) in the protection against water immersion and restraint stress (WRS)-induced lesions in rats with intact sensory nerves and those with capsaicin denervation and the accompanying changes in malondialdehyde (MDA) content considered as an index of lipid peroxidation, the activity of GSH and SOD-2 and gastric mucosal expression of antioxidative enzymes glutathione peroxidase (GPx) and SOD-2.

View Article and Find Full Text PDF

Acetylsalicylic acid (ASA) is mainly recognized as painkiller or anti-inflammatory drug. However, ASA causes serious side effects towards gastrointestinal (GI) tract which limits its usefulness. Carbon monoxide (CO) and hydrogen sulfide (HS) have been described to act as important endogenous messengers and mediators of gastroprotection but whether they can interact in gastroprotection against acute ASA-induced gastric damage remains unknown.

View Article and Find Full Text PDF

Background: Stress of different origin is known to alter so called "braingut axis" and contributes to a broad array of gastrointestinal disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and other functional gastrointestinal diseases. The stressful situations and various stressors including psychosocial events, heat, hypo- and hyperthermia may worsen the course of IBD via unknown mechanism. The aims of this paper were to provide an overview of experimental and clinical evidences that stress activates the brain-gut axis which results in a mucosal mast cells activation and an increase in the production of proinflammatory cytokines and other endocrine and humoral mediators.

View Article and Find Full Text PDF

Carbon monoxide (CO) produced by heme oxygenase (HO)-1 and HO-2 or released from the CO-donor, tricarbonyldichlororuthenium (II) dimer (CORM-2) causes vasodilation, with unknown efficacy against stress-induced gastric lesions. We studied whether pretreatment with CORM-2 (0.1-10 mg/kg oral gavage (i.

View Article and Find Full Text PDF

The inhibition of angiotensin-converting enzyme (ACE) or the blockade of angiotensin (Ang) AT-1 receptors affords protection against acute gastric mucosal injury, but whether the major metabolite of renin-angiotensin system (RAS), Ang-(1-7), accelerates the healing process of preexisting gastric ulcers remains unknown. Previous studies documented that Ang-(1-7) acting via its own Mas receptor exerts vascular responses opposing those of Ang II. We studied the effects of the Ang-(1-7)/Mas receptor axis on the healing rate of acetic-acid-induced gastric ulcers with or without the blockade of Mas receptors by A 779 and compared it with the effects of activation and blockade of the AT-1 receptor by the treatment with Ang II and losartan, respectively, the inhibition of ACE by lisinopril, the NO/cNOS inhibition by L-NAME and inhibition of prostaglandin/COX system by indomethacin in the presence of Ang-(1-7).

View Article and Find Full Text PDF

Gastroesophageal reflux disease (GERD) is a global disease rapidly increasing among world population. The pathogenesis of reflux esophagitis which is considered as the early stage of GERD is complex, resulting from an imbalance between aggressive factors damaging the esophagus and a number of the natural defense mechanisms. The esophageal mucosa is in a state of continuous exposure to potentially damaging endogenous and exogenous factors.

View Article and Find Full Text PDF

The gastric mucosa plays an important role in the physiological function of the stomach. This mucosa acts as gastric barrier, which protects deeper located cells against the detrimental action of the gastric secretory components, such as acid and pepsin. Integrity of the gastric mucosa depends upon a variety of factors, such as maintenance of microcirculation, mucus-alkaline secretion and activity of the antioxidizing factors.

View Article and Find Full Text PDF

Hormonal peptides like ghrelin, orexin A (OXA) or nesfatin-1 not only regulate appetite, which is their basic biological function, but also contribute to mechanisms responsible for maintaining integrity of the gastric mucosa. Previous studies including those from our laboratory have revealed that their gastroprotective effect results from cooperation with other factors responsible for protection of the gastric mucosa, including prostaglandin (PG) synthesis pathway, nitric oxide (NO) and the sensory afferent fibres releasing the vasoactive neurotransmitters. The aim of the present study was to determine whether ghrelin, orexin-A (OX-A) or nesfatin-1 with their protective effect on the gastric mucosa, also can modify the healing of chronic gastric ulcers.

View Article and Find Full Text PDF

Nesfatin-1 belongs to a family of anorexigenic peptides, which are responsible for satiety and are identified in the neurons and endocrine cells within the gut. These peptides have been implicated in the control of food intake; however, very little is known concerning its contribution to gastric secretion and gastric mucosal integrity. In this study the effects of nesfatin-1 on gastric secretion and gastric lesions induced in rats by 3.

View Article and Find Full Text PDF

This review was designed to provide an update on the role of asymmetric arginine (ADMA), the endogenous inhibitor of nitric oxide (NO) synthase in the pathophysiology of the upper gastrointestinal (GI) tract. Numerous studies in the past confirmed that NO is a multifunctional endogenous gas molecule involved in most of the body organs' functional and metabolic processes including the regulation of gastrointestinal (GI) secretory functions, motility, maintenance of GI integrity, gastroprotection and ulcer healing. NO is metabolized from L-arginine by enzymatic reaction in the presence of constitutive NO synthase.

View Article and Find Full Text PDF

The term cytoprotection pioneered by Robert and colleagues has been introduced to describe the remarkable ability of endogenous and exogenous prostaglandins (PGs) to prevent acute gastric hemorrhagic lesions induced by noxious stimuli such as ethanol, bile acids, hiperosmolar solutions and nonsteroidal anti-inflammatory agents such as aspirin. Since that time many factors were implicated to possess gastroprotective properties such as growth factors including epidermal growth factor (EGF) and transforming factor alpha (TGFα), vasodilatory mediators such as nitric oxide (NO) and calcitonin gene related peptide (CGRP) as well as appetite gut hormones including gastrin and cholecystokinin (CCK), leptin and recently ghrelin. This protective action of gut peptides has been attributed to the release of PG but question remains whether another peptide angiotensin, the classic component of the systemic and local renin-angiotensin system (RAS) could be involved in the mechanism of gastric integrity and gastroprotection.

View Article and Find Full Text PDF

Ghrelin is an important hormone involved in the control of the human appetite center. Recently, protective properties of this hormone have been recognized in various models of impairment of the gastric mucosa, including stress, ischemia and reperfusion (I/R). Ghrelin is predominantly secreted by the gastric mucosa of stomach, but there are other sources of ghrelin, for example in the hypothalamus and various parts of the central nervous system (CNS) that should be taken into consideration.

View Article and Find Full Text PDF

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for their anti-inflammatory, analgesic and antipyretic effects, however their use is associated with the broad spectrum of side effects observed in human as well as the experimental animals. Despite damaging activity of NSAIDs in upper gastrointestinal (GI) tract, these drugs exert deleterious influence in lower GI tract, including colon. The role of GI microflora in the pathogenesis of NSAIDs-induced experimental colonic damage is not completely understood.

View Article and Find Full Text PDF

Previous studies revealed that prostaglandins contribute to the mechanism of maintenance of gastrointestinal integrity and mediate various physiological aspects of mucosal defense. The suppression of prostaglandin synthesis in the stomach is a critical event in terms of the development of mucosal injury after administration of various NSAID including aspirin (ASA). A worldwide use of ASA is now accepted due to its remarkable analgesic, antipyretic and anti-thrombotic prophylactics against myocardial infarct and coronary disorders despite the fact that the use of NSAIDs is associated with the risk of gastrointestinal bleedings, haemorrhagic lesions and ulcerations.

View Article and Find Full Text PDF

The purpose of this study was to develop an acute animal model of reflux esophagitis, which would be suitable to induce the esophageal damage caused by gastric acid reflux, thus mimicking the esophageal injury of human gastroesophageal reflux disease (GERD). Global research indicates that GERD is rapidly increasing among the world's population. NSAIDs are known to induce gastrointestinal damage and low doses of aspirin (ASA) have been shown to increase the incidences of GERD in humans.

View Article and Find Full Text PDF

This review summarizes the involvement of centrally and peripherally applied melatonin, a major hormone of pineal gland, in the mechanism of gastric mucosal integrity, gastroprotection and ulcer healing. Melatonin was originally shown to attenuate gastric mucosal lesions but the controversy exists in the literature as to whether melatonin derived from the pineal gland, considered as the major source of this indole or rather that locally generated from L-tryptophan within gastric mucosa, plays predominant role in the mechanism of gastrointestinal integrity. Both, intragastric (i.

View Article and Find Full Text PDF

Orexigenic peptides are group of endocrine hormones exerting a pleiotropic influence on many physiological functions including regulation of the feeding behaviour and energy expenditure, release of growth hormone (GH) and inotropic effects on the heart. Some of these peptides such as ghrelin, originally identified in the gastric mucosa, has been involved not only in control of food intake and growth hormone release but also exerts the immunomodulatory and anti-inflammatory properties. This review summarizes the recent attempts to prove the concept that orexigenic peptides such as ghrelin, orexin-A and obestatin besides playing an important role in the mechanism of food intake, exhibit a potent gastroprotective action against the formation of acute gastric mucosal injury induced by various ulcerogens.

View Article and Find Full Text PDF