Publications by authors named "Paige J Moncure"

The diffusion coefficients of poly(ethylene glycol) methyl ether thiol (PEGSH)-functionalized gold nanoparticles (NPs) with different effective grafting densities were measured in polyacrylamide hydrogels. The NP core size was held constant, and the NPs were functionalized with mixtures of short oligomeric ligands (254 Da PEGSH) and longer (either 1 or 2 kDa PEGSH) ligands. The ratio of short and long ligands was varied such that the grafting density of the high-molecular-weight (MW) ligand ranged from approximately 1 to 100 high-MW ligands/NP.

View Article and Find Full Text PDF

Design criteria for controlling engineered nanomaterial (ENM) antimicrobial performance will enable advances in medical, food production, processing and preservation, and water treatment applications. In pursuit of this goal, better resolution of how specific ENM properties, such as nanoparticle shape, influence antimicrobial activity is needed. This study probes the antimicrobial activity toward a model Gram-negative bacterium, (), that results from interfacial interactions with differently shaped silver nanoparticles (AgNPs): cube-, disc-, and pseudospherical-AgNPs.

View Article and Find Full Text PDF

Whether in organic synthesis or solar energy conversion, light can be a powerful reagent in chemical reactions and introduce new opportunities for synthetic control including duration, intensity, interval, and energy of irradiation. Here, we report the use of a molecular photosensitizer as a reducing agent in metallic nanoparticle syntheses. Using this approach, we report three key findings.

View Article and Find Full Text PDF

The diffusion of poly(ethylene glycol) methyl ether thiol (PEGSH)-functionalized gold nanoparticles (NPs) was measured in polyacrylamide gels with various cross-linking densities. The molecular weight of the PEGSH ligand and particle core size were both varied to yield particles with hydrodynamic diameters ranging from 7 to 21 nm. The gel mesh size was varied from approximately 36 to 60 nm by controlling the cross-linking density of the gel.

View Article and Find Full Text PDF