AbstractMass mortality events provide valuable insight into biological extremes and also ecological interactions more generally. The sea star wasting epidemic that began in 2013 catalyzed study of the microbiome, genetics, population dynamics, and community ecology of several high-profile species inhabiting the northeastern Pacific but exposed a dearth of information on the diversity, distributions, and impacts of sea star wasting for many lesser-known sea stars and a need for integration across scales. Here, we combine datasets from single-site to coast-wide studies, across time lines from weeks to decades, for 65 species.
View Article and Find Full Text PDFAbstractMass mortality events are increasing globally in frequency and magnitude, largely as a result of human-induced change. The effects of these mass mortality events, in both the long and short term, are of imminent concern because of their ecosystem impacts. Genomic data can be used to reveal some of the population-level changes associated with mass mortality events.
View Article and Find Full Text PDFSeagrass wasting disease, caused by protists of the genus , is an important stressor of the dominant macrophyte in Florida Bay (FB), United States, . FB exhibits countervailing gradients in plant morphology and resource availability. A synoptic picture of the relationship was obtained by assessing the activity of four immune biomarkers in conjunction with pathogen prevalence and load [ quantitative PCR (qPCR)] at 15 sites across FB.
View Article and Find Full Text PDFRecent trends suggest that marine disease outbreaks caused by opportunistic pathogens are increasing in frequency and severity. One such malady is seagrass wasting disease, caused by pathogens in the genus Labyrinthula. It is suspected that pathogenicity is intimately linked to the ability of the host to initiate defense responses; however, supportive evidence is lacking.
View Article and Find Full Text PDFMuscle atrophy results from a range of physiological conditions, including immobilization, spinal cord damage, inflammation and aging. In this study we describe two genes, NEFA-interacting nuclear protein 30 (Nip30) and RING Finger and SPRY domain containing 1 (Rspry1), which have not previously been characterized or shown to be expressed in skeletal muscle. Furthermore, Nip30 and Rspry1 were transcriptionally induced in response to neurogenic muscle wasting in mice and were also found to be expressed endogenously at the RNA and protein level in C2C12 mouse muscle cells.
View Article and Find Full Text PDF