Both multilayered (ML) and few-layered (FL) TiCT nanosheets have been prepared through a typical etching and delaminating procedure. Various characterizations confirm that the dominant terminal groups on ML-TiCT and FL-TiCT are different, which have been assigned to O-related and hydroxyl groups, respectively. Such deviation of the dominant terminals results in the different physical and chemical performance and eventually makes the nanosheets have different potential applications.
View Article and Find Full Text PDFA key challenge in developing direct methanol fuel cells is the fabrication of electrocatalysts with high activity and long durability. Herein, we report a performance enhanced electrocatalyst of nanoscale Pd on MXene (TiCT) and reduced graphene oxide (rGO). The mass activity of Pd/TiCT-rGO (1: 1) hybrid toward methanol oxidation reaction is 753 mA mg, which is 1.
View Article and Find Full Text PDFOver the past few years, significant attention has been focused on HC(NH)PbI (FAPbI) perovskite due to its reduced band gap and enhanced thermal stability compared with the most studied CHNHPbI (MAPbI). However, FAPbI is sensitive to moisture and also encounters a serious structural phase-transition from photoactive α-phase to photoinactive δ-phase. Herein, we first develop a novel FAI gas-phase-assisted mixed-cation compositional modulation method to fabricate CsFAPbI perovskite solar cells (PSCs), and realize the structural stabilization of α-phase FAPbI with the incorporation of smaller inorganic Cs ions.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2016
Inorganic CsPbI3 perovskite solar cells (PSCs) owning comparable photovoltaic performance and enhanced thermal stability compared to organic-inorganic hybrid perovskites have attracted enormous interest in the past year. However, it is still a challenge to stabilize the desired black α-CsPbI3 perovskites in ambient air for photovoltaic applications. Herein, sequential solvent engineering including the addition of hydroiodic acid (HI) and subsequent isopropanol (IPA) treatment for fabricating stable and working CsPbI3 PSCs is developed, and a novel low-temperature phase-transition route from new intermediate Cs4PbI6 to stable α-CsPbI3 is also released for the first time.
View Article and Find Full Text PDFWe present a new transformation route from PbS to CH3NH3PbI3 for the facile preparation of perovskites with all kinds of shapes via vapor-assisted chemical bath deposition (VACBD). As such, curved and large-area CH3NH3PbI3 films with high quality are successfully achieved, which are suitable for the manufacturing scale-up of perovskite solar cells.
View Article and Find Full Text PDFRecently, hybrid perovskite solar cells (PSCs) have attracted extensive attention due to their high efficiency and simple preparing process. Herein, a facile low-pressure chemical vapor deposition (LPCVD) technology is first developed to fabricate PSCs, which can effectively reduce the over-rapid intercalating reaction rate and easily overcome this blocking issue during the solution process. As a result, the prepared uniform perovskite films exhibit good crystallization, strong absorption, and long carrier diffusion length.
View Article and Find Full Text PDF