The GlcNAc transferase OGT interacts robustly with all three mammalian TET methylcytosine dioxygenases. We show here that deletion of the gene in mouse embryonic stem cells (mESC) results in a widespread increase in the TET product 5-hydroxymethylcytosine (5hmC) in both euchromatic and heterochromatic compartments, with concomitant reduction of the TET substrate 5-methylcytosine (5mC) at the same genomic regions. mESC engineered to abolish the TET1-OGT interaction likewise displayed a genome-wide decrease of 5mC.
View Article and Find Full Text PDFDNA comprises molecular information stored in genetic and epigenetic bases, both of which are vital to our understanding of biology. Most DNA sequencing approaches address either genetics or epigenetics and thus capture incomplete information. Methods widely used to detect epigenetic DNA bases fail to capture common C-to-T mutations or distinguish 5-methylcytosine from 5-hydroxymethylcytosine.
View Article and Find Full Text PDFModels that can effectively represent structured Electronic Healthcare Records (EHR) are central to an increasing range of applications in healthcare. Due to the sequential nature of health data, Recurrent Neural Networks have emerged as the dominant component within state-of-the-art architectures. The signature transform represents an alternative modelling paradigm for sequential data.
View Article and Find Full Text PDF