Endometrial cancer is the most frequent malignant tumor of the female reproductive tract but lacks effective therapy. EphA2, a receptor tyrosine kinase, is overexpressed by various cancers including endometrial cancer and is associated with poor clinical outcomes. In preclinical models, EphA2-targeted drugs had modest efficacy.
View Article and Find Full Text PDFAnti-angiogenic therapies, such as anti-VEGF antibodies (AVAs), have shown promise in clinical settings. However, adaptive resistance to such therapies occurs frequently. We use orthotopic ovarian cancer models with AVA-adaptive resistance to investigate the underlying mechanisms.
View Article and Find Full Text PDFMedical schools are charged to deliver a curriculum on religion and spirituality (R/S), so a novel experiential course, the Sacred Sites of Houston, was developed. Sixty students completed the course consisting of 6 site visits. Post-course, participants described more general knowledge and knowledge of how each faith tradition describes medicine and health (p < 0.
View Article and Find Full Text PDFObesity is a disease characterized by chronic low-grade systemic inflammation and has been causally linked to the development of 13 cancer types. Several studies have been undertaken to determine whether tumors evolving in obese environments adapt differential interactions with immune cells and whether this can be connected to disease outcome. Most of these studies have been limited to single-cell lines and tumor models and analysis of limited immune cell populations.
View Article and Find Full Text PDFProtein methylation and acetylation play important roles in biological processes, and misregulation of these modifications is involved in various diseases. Therefore, it is critical to understand the activities of the enzymes responsible for these modifications. Herein we describe a sensitive method for ratiometric quantification of methylated and acetylated peptides via MALDI-MS by direct spotting of enzymatic methylation and acetylation reaction mixtures without tedious purification procedures.
View Article and Find Full Text PDFThe protein N-terminal methyltransferase 1 (NTMT1) catalyzes the transfer of the methyl group from the S-adenosyl-l-methionine to the protein α-amine, resulting in formation of S-adenosyl-l-homocysteine and α-N-methylated proteins. NTMT1 is an interesting potential anticancer target because it is overexpressed in gastrointestinal cancers and plays an important role in cell mitosis. To gain insight into the biochemical mechanism of NTMT1, we have characterized the kinetic mechanism of recombinant NTMT1 using a fluorescence assay and mass spectrometry.
View Article and Find Full Text PDF