Psychopharmacology (Berl)
November 2024
The co-occurrence of chronic pain and opioid misuse has led to numerous preclinical investigations of pain-opioid interactions to examine how pain manipulations alter the reinforcing properties of opioids. However, preclinical investigations of chronic pain effects on opioid drug self-administration have produced inconsistent results. Our previous work demonstrated that established fentanyl self-administration is resistant to change by induction of chronic inflammatory pain (Complete Freund's Adjuvant; CFA) in male and female rats, while other laboratories have shown that CFA increased fentanyl self-administration in male but not female rats when pain induction precedes self-administration, which may be a critical factor in determining the effects of chronic pain on self-administration.
View Article and Find Full Text PDFAlcohol use disorder (AUD) produces cognitive deficits, indicating a shift in prefrontal cortex (PFC) function. PFC glutamate neurotransmission is mostly mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type ionotropic receptors (AMPARs); however preclinical studies have mostly focused on other receptor subtypes. Here we examined the impact of early withdrawal from chronic ethanol on AMPAR function in the mouse medial PFC (mPFC).
View Article and Find Full Text PDFThe current opioid epidemic is a national health crisis marked by skyrocketing reports of opioid misuse and overdose deaths. Despite the risks involved, prescription opioid analgesics are the most powerful and effective medications for treating pain. There is a clear need to investigate the risk of opioid misuse liability in male and female adults experiencing chronic pain.
View Article and Find Full Text PDFNeuroimmune pathways regulate brain function to influence complex behavior and play a role in several neuropsychiatric diseases, including alcohol use disorder (AUD). In particular, the interleukin-1 (IL-1) system has emerged as a key regulator of the brain's response to ethanol (alcohol). Here we investigated the mechanisms underlying ethanol-induced neuroadaptation of IL-1β signaling at GABAergic synapses in the prelimbic region of the medial prefrontal cortex (mPFC), an area responsible for integrating contextual information to mediate conflicting motivational drives.
View Article and Find Full Text PDFOpioids are commonly prescribed for pain despite growing evidence of their low efficacy in the treatment of chronic inflammatory pain and the high potential for misuse. There is a clear need to investigate non-opioid alternatives for the treatment of pain. In the present study, we tested the hypothesis that acute and repeated dopamine agonist treatment would attenuate mechanical hypersensitivity in male Long-Evans rats experiencing chronic inflammatory pain.
View Article and Find Full Text PDFOpioids and alcohol are widely used to relieve pain, with their analgesic efficacy stemming from rapid actions on both spinal and supraspinal nociceptive centers. As an extension of these relationships, both substances can be misused in attempts to manage negative affective symptoms stemming from chronic pain. Moreover, excessive use of opioids or alcohol facilitates the development of substance use disorder (SUD) as well as hyperalgesia, or enhanced pain sensitivity.
View Article and Find Full Text PDFAlcohol elicits a neuroimmune response in the brain contributing to the development and maintenance of alcohol use disorder (AUD). While pro-inflammatory mediators initiate and drive the neuroimmune response, anti-inflammatory mediators provide an important homeostatic mechanism to limit inflammation and prevent pathological damage. However, our understanding of the role of anti-inflammatory signaling on neuronal physiology in critical addiction-related brain regions and pathological alcohol-dependence induced behaviors is limited, precluding our ability to identify promising therapeutic targets.
View Article and Find Full Text PDFAlthough acetaminophen (ApAP) is one of the most commonly used medicines worldwide, hepatotoxicity is a risk with overdose or in patients with compromised liver function. ApAP overdose is the most common cause of acute fulminant hepatic failure. Oxidation of ApAP to N-acetyl-p-benzoquinone imine (NAPQI) is the mechanism for hepatotoxicity.
View Article and Find Full Text PDFAlcohol use disorder (AUD) is a chronic, relapsing psychiatric disease characterized by the emergence of negative emotional states and the development of motivational deficits that manifest during alcohol withdrawal. Accordingly, alcohol may be sought after and taken in excessive amounts to alleviate withdrawal-related symptoms. To develop more effective treatments for AUD, it is necessary to identify potential molecular targets that underlie the transition from initial alcohol use to alcohol dependence, and our previous work has implicated a role for potentiated glucocorticoid receptor (GR) signaling in this regard.
View Article and Find Full Text PDFIn contrast to their analgesic properties, excessive use of either opioids or alcohol produces a paradoxical emergence of heightened pain sensitivity to noxious stimuli, termed hyperalgesia, which may promote increased use of opioids or alcohol drinking to manage worsening pain symptoms. Hyperalgesia has traditionally been measured in rodents via reflex-based assays, including the von Frey method. To better model the motivational and affective dimensions of pain in a state of opioid/alcohol dependence and withdrawal, this unit describes the use of a non-reflex-based method for measuring pain avoidance-like behavior in dependent rats.
View Article and Find Full Text PDFRepeated use of opioids can lead to the development of analgesic tolerance and dependence. Additionally, chronic opioid exposure can cause a paradoxical emergence of heightened pain sensitivity to noxious stimuli, termed hyperalgesia, which may drive continued or escalated use of opioids to manage worsening pain symptoms. Opioid-induced hyperalgesia has traditionally been measured in rodents via reflex-based assays, including the von Frey method.
View Article and Find Full Text PDFThe prefrontal cortex (PFC) represents and executes the highest forms of goal-directed behavior, and has thereby attained a central neuroanatomical position in most pathophysiological conceptualizations of motivational disorders, including alcohol use disorder (AUD). Excessive, intermittent exposure to alcohol produces an allostatic dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis along with heightened forebrain glucocorticoid signaling that can damage PFC architecture and function. Negative affective states intimately associated with the transition to alcohol dependence result not only from a dysregulated HPA axis, but also from the inability of a damaged PFC to regulate subcortical stress and reinforcement centers, including the ventral striatum and amygdala.
View Article and Find Full Text PDFThe dorsal hippocampus and dorsal striatum have dissociable roles in learning and memory that are related to region-specific changes in proteins necessary for neuronal plasticity and memory formation. There is additional evidence that the hippocampus and striatum can interact during memory formation. Phosphorylation of tyrosine receptor kinase B is important for memory formation in the hippocampus, but whether or not it has a role in striatum-dependent learning, or in interactions between the hippocampus and striatum, has not been examined.
View Article and Find Full Text PDFAn important new study by Kvarta, Bradbrook, Dantrassy, Bailey, and Thompson (J Neurophysiol 114: 1713-1724, 2015) examined the effects of persistent stress and excessive glucocorticoid levels on hippocampal function and emotional behavior in rodents. The authors specifically implicate the temporoammonic pathway as being susceptible to reductions in excitatory function in the context of chronic stress. We discuss the importance of this new finding in the broader context of medication development for major depressive disorder.
View Article and Find Full Text PDFUnlabelled: Reversible phosphorylation, a fundamental regulatory mechanism required for many biological processes including memory formation, is coordinated by the opposing actions of protein kinases and phosphatases. Type I protein phosphatase (PP1), in particular, has been shown to constrain learning and memory formation. However, how PP1 might be regulated in memory is still not clear.
View Article and Find Full Text PDF