Deregulated metabolism is one of the hallmarks of cancer. It is well-known that tumour cells tend to metabolize glucose via glycolysis even when oxygen is available and mitochondrial respiration is functional. However, the lower energy efficiency of aerobic glycolysis with respect to mitochondrial respiration makes this behaviour, namely the Warburg effect, counter-intuitive, although it has now been recognized as source of anabolic precursors.
View Article and Find Full Text PDFIn this paper, a numerical investigation is carried out to provide insights into the fate of inhaled aerosols after their deposition on the lung lining fluid in both healthy and diseased states. Pulmonary drug delivery is a well-known non-invasive route of administration compared to intravenous delivery. Aerosol particles are formulated and used as drug carriers, which are then sent to the airways using aerosol drug delivery devices.
View Article and Find Full Text PDFThe airways of the human respiratory system are covered by a protective layer, which is known as airway surface liquid (ASL). This layer consists of two relatively distinct sub-layers; a mucus layer (ML), and a periciliary liquid layer (PCL). In addition, the airways are lined with a dense mat of hair-like structures, called cilia, which beat back and forth in a co-ordinated manner and mainly propel the mucus layer.
View Article and Find Full Text PDFBacterial habitats are often associated with fluid flow environments. Bacterial twitching is important for initial bacterial colonization and biofilm formation. The existing research about bacteria twitching is largely experimental orientated.
View Article and Find Full Text PDFIndividual based Models (IbM) must transition from research tools to engineering tools. To make the transition we must aspire to develop large, three dimensional and physically and biologically credible models. Biological credibility can be promoted by grounding, as far as possible, the biology in thermodynamics.
View Article and Find Full Text PDFBiofilms occur in a broad range of environments under heterogeneous physicochemical conditions, such as in bioremediation plants, on surfaces of biomedical implants, and in the lungs of cystic fibrosis patients. In these scenarios, biofilms are subjected to shear forces, but the mechanical integrity of these aggregates often prevents their disruption or dispersal. Biofilms' physical robustness is the result of the multiple biopolymers secreted by constituent microbial cells which are also responsible for numerous biological functions.
View Article and Find Full Text PDFWe investigate the feasibility of using a surrogate-based method to emulate the deformation and detachment behaviour of a biofilm in response to hydrodynamic shear stress. The influence of shear force, growth rate and viscoelastic parameters on the patterns of growth, structure and resulting shape of microbial biofilms was examined. We develop a statistical modelling approach to this problem, using combination of Bayesian Poisson regression and dynamic linear models for the emulation.
View Article and Find Full Text PDFAccurate predictive modelling of the growth of microbial communities requires the credible representation of the interactions of biological, chemical and mechanical processes. However, although biological and chemical processes are represented in a number of Individual-based Models (IbMs) the interaction of growth and mechanics is limited. Conversely, there are mechanically sophisticated IbMs with only elementary biology and chemistry.
View Article and Find Full Text PDFTwo nonlinear models are proposed to investigate the focused acoustic waves that the nonlinear effects will be important inside the liquid around the scatterer. Firstly, the one dimensional solutions for the widely used Westervelt equation with different coordinates are obtained based on the perturbation method with the second order nonlinear terms. Then, by introducing the small parameter (Mach number), a dimensionless formulation and asymptotic perturbation expansion via the compressible potential flow theory is applied.
View Article and Find Full Text PDF