Publications by authors named "Pagratis M"

The chromosome 21 encoded protein kinase DYRK1A is essential for normal human development. Mutations in DYRK1A underlie a spectrum of human developmental disorders, and increased dosage in trisomy 21 is implicated in Down syndrome related pathologies. DYRK1A regulates a diverse array of cellular processes through physical interactions with substrates and binding partners in various subcellular compartments.

View Article and Find Full Text PDF

Tubulin is important for a wide variety of cellular processes including cell division, ciliogenesis, and intracellular trafficking. To perform these diverse functions, tubulin is regulated by post-translational modifications (PTM), primarily at the C-terminal tails of both the α- and β-tubulin heterodimer subunits. The tubulin C-terminal tails are disordered segments that are predicted to extend from the ordered tubulin body and may regulate both intrinsic properties of microtubules and the binding of microtubule associated proteins (MAP).

View Article and Find Full Text PDF

A benign, clonable tag for the localization of proteins by electron microscopy of cells would be valuable, especially if it provided labelling with high signal-to-noise ratio and good spatial resolution. Here we explore the use of metallothionein as such a localization marker. We have achieved good success with desmin labelled in vitro and with a component of the yeast spindle pole body labelled in cells.

View Article and Find Full Text PDF

Cryo-electron microscopy is expanding its scope from macromolecules towards much larger and more complex cellular specimens such as organelles, cells and entire tissues. While isolated macromolecular specimens are typically composed of only very few different components that may be recognized by their shape, size or state of polymerization, cellular specimens combine large numbers of proteinaceous structures as well as nucleic acids and lipid arrays. Consequently, an unambiguous identification of these structures within the context of a whole cell may create a very difficult challenge.

View Article and Find Full Text PDF

Fusion of synaptic vesicles with the plasma membrane is mediated by the SNARE (soluble NSF attachment receptor) proteins and is regulated by synaptotagmin (syt). There are at least 17 syt isoforms that have the potential to act as modulators of membrane fusion events. Synaptotagmin IV (syt IV) is particularly interesting; it is an immediate early gene that is regulated by seizures and certain classes of drugs, and, in humans, syt IV maps to a region of chromosome 18 associated with schizophrenia and bipolar disease.

View Article and Find Full Text PDF

The regulation of vertebrate eye development requires the activity of many transcription factors. In this report, we demonstrate that the T-box factor Tbx12 is necessary for normal development of the retina. Tbx12 is expressed during early stages of retinal development in multiple species of vertebrate embryos.

View Article and Find Full Text PDF

We have isolated the Xenopus orthologue of the T-box gene, Tbx20, and characterized its developmental expression profile. We show that Tbx20 is one of the earliest markers of heart tissue in Xenopus, and is expressed throughout all cardiac tissue during later stages of development. In addition, we also observe expression in the cement gland, the jugular vein, the lung bud, the cloacal aperture, rhombomeres 2, 4, 6 and 8, and in a subset of motor neurons.

View Article and Find Full Text PDF

High-level expression of soluble recombinant human hemoglobin (rHb) in Escherichia coli was obtained with several hemoglobin variants. Under identical conditions, two rHbs containing the Presbyterian mutation (Asn-108-->Lys) in beta-globin accumulated to approximately twofold less soluble globin than rHbs containing the corresponding wild-type beta-globin subunit accumulated. The beta-globin Providence(asp) mutation (Lys-82-->Asp) significantly improved soluble rHb accumulation compared to the wild-type beta-globin subunit and restored soluble accumulation of rHbs containing the Presbyterian mutation to wild-type levels.

View Article and Find Full Text PDF

Complexation of Ni(II) with native state recombinant hemoglobin is shown to produce NH2-terminal deamination and globin cross-linking in the presence of the oxidant potassium peroxymonosulfate (OxoneTM). Both the oxidative deamination and cross-linking are exclusive to the beta chains. Recombinant hemoglobin mutants have been created to identify protein sequence requirements for these reactions.

View Article and Find Full Text PDF

Accumulation of soluble recombinant hemoglobin (rHb1.1) in Escherichia coli requires proper protein folding, prosthetic group (heme) addition, and subunit assembly. This served as a new model system for the study of the effects of temperature, protein synthesis rates, and protein accumulation rates on protein solubility in E.

View Article and Find Full Text PDF