Publications by authors named "Paetzold L"

Controlled actuation of superparamagnetic beads (SPBs) within a microfluidic environment using tailored dynamic magnetic field landscapes (MFLs) is a potent approach for the realization of point-of-care diagnostics within Lab-on-a-chip (LOC) systems. Making use of an engineered magnetic domain pattern as the MFL source, a functional LOC-element with combined magnetophoretic "funnel", concentrator, and "valve" functions for micron-sized SPBs is presented. A parallel-stripe domain pattern design with periodically decreasing/increasing stripe lengths is fabricated in a topographically flat continuous exchange biased (EB) thin film system by ion bombardment induced magnetic patterning (IBMP).

View Article and Find Full Text PDF

Wheat cultivars 'TAM 111' and 'TAM 112' have been dominantly grown in the Southern U.S. Great Plains for many years due to their high yield and drought tolerance.

View Article and Find Full Text PDF

Plant diseases can reduce crop yield by up to 100%. Therefore, timely and confirmatory diagnosis of plant diseases is strongly desired. Typical pathogen assaying methods include polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

' Liberibacter solanacearum' (Lso), transmitted by the potato psyllid (), is the putative causal agent of potato zebra chip disease. The bacterial pathogen infects a wide range of solanaceous plants (both wild and cultivated species), among which are peppers, potatoes, and tomatoes. Currently there are two commonly detected, genetically distinct haplotypes of Lso (A and B) identified from potatoes in the United States.

View Article and Find Full Text PDF

Mite-vectored virus diseases of wheat are common throughout the Great Plains and cause significant economic losses to growers each year. These diseases are caused by (WSMV), (TriMV), and (WMoV), all of which are transmitted by the wheat curl mite (WCM), Keifer. New wheat cultivars with tolerance or resistance to WSMV have been released recently, but their widespread cultivation and potential impact on mite-transmitted virus incidence in the Texas Panhandle was unknown.

View Article and Find Full Text PDF

Zebra chip (ZC) disease of potato is associated with the putative pathogen 'Candidatus Liberibacter solanacearum', which is transmitted by the potato psyllid Bactericera cockerelli (Hem., Triozidae). The present study was initiated to investigate 'Ca.

View Article and Find Full Text PDF

The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), had been known for nearly a century to cause psyllid yellows of solanaceous crops. However, it has only been a decade since the insect was discovered to transmit the bacterium 'Candidatus Liberibacter solanacearum' (Lso), which putatively causes potato zebra chip disease. This project was initiated to quantify temporal incidences of haplotypes of the psyllid (Central, Southwestern, and Western) and Lso (A, B) in potato fields and in native vegetation.

View Article and Find Full Text PDF

Potato psyllids vector 'Candidatus Liberibacter solanacearum' (Lso), the putative causal agent of potato zebra chip (ZC). Currently, sticky traps are the primary psyllid monitoring tools used by growers for making management decisions. However, the reliability of sticky traps in predicting psyllid numbers in potato fields has always been questioned.

View Article and Find Full Text PDF

Zebra chip (ZC) disease, caused by 'Candidatus Liberibacter solanacearum', which is transmitted by the potato psyllid, has negatively affected potato production in the United States for over a decade. The present study was conducted to evaluate the affect of the number of bacteriliferous psyllids on 'Ca. L.

View Article and Find Full Text PDF

Zebra chip (ZC) is a disease of potato, putatively caused by the vectorborne bacterium 'Candidatus Liberibacter solanacearum'. Although ZC has been a major concern due its significant negative impact on both potato yield and quality, its effect on seed potato sprouting has been the subject of recent evaluations. The present study was conducted to determine whether variation in emergence is affected by the infection duration of 'Ca.

View Article and Find Full Text PDF

The bacterium 'Candidatus Liberibacter solanacearum' is associated with zebra chip disease (ZC), a threat to potato production in North America and New Zealand. It is vectored by potato psyllids. Previous studies observed that 'Ca.

View Article and Find Full Text PDF

A 2-year field study was conducted to evaluate plant susceptibility to 'Candidatus Liberibacter solanacearum', the putative causal agent of zebra chip disease (ZC). Incubation period of ZC, the rate of symptom progress, and the rate of pathogen population growth were evaluated for individual plants infested on different weeks after emergence. In foliage, incubation period was between 21 and 28 days.

View Article and Find Full Text PDF

Zebra chip disease (ZC), putatively caused by the fastidious bacterium 'Candidatus Liberibacter solanacearum', is a threat to potato growers worldwide. However, little is known about biochemical shifts in different potato genotypes in response to 'Ca. L.

View Article and Find Full Text PDF

Potato zebra chip (ZC), caused by the bacterial pathogen 'Candidatus Liberibacter solanacearum', which is vectored by the potato psyllid (Bactericera cockerelli), has caused widespread damage to U.S. potato production ever since its first discovery in south Texas in 2000.

View Article and Find Full Text PDF

Zebra chip disease, putatively caused by the bacterium 'Candidatus Liberibacter solanacearum', is of increasing concern to potato production in Mexico, the United States, and New Zealand. However, little is known about the etiology of this disease and changes that occur within host tubers that result in its symptoms. Previous studies found that increased levels of phenolics, amino acids, defense proteins, and carbohydrates in 'Ca.

View Article and Find Full Text PDF

ABSTRACT With diseases caused by vector-borne plant pathogens, acquisition and inoculation are two primary stages of the transmission, which can determine vector efficiency in spreading the pathogen. The present study was initiated to quantify acquisition and inoculation successes of 'Candidatus Liberibacter solanacearum', the etiological agent of zebra chip disease of potato, by its psyllid vector, Bactericera cockerelli (Hemiptera: Triozidae). Acquisition success was evaluated in relation to feeding site on the host plant as well as the acquisition access period.

View Article and Find Full Text PDF

Zebra chip is a newly emerging potato disease which imparts dark colorations on fried chips, rendering them unmarketable. The disease is associated with the phloem-limited proteobacterium 'Candidatus Liberibacter solancearum', vectored by the potato psyllid Bactericera cockerelli. First reported from Mexico in the mid-1990s, the disease was observed for the first time in Texas in 2000 and is now prevalent in several potato-producing regions of the United States.

View Article and Find Full Text PDF

Retinoic acid inducible gene I (RIG-I) and mitochondrial antiviral signaling (MAVS) proteins have recently been found to operate in a pathway for the detection and subsequent elimination of replicating viral genomes. Because of this innate immunity role, RIG-I and MAVS are candidates for studies of disease resistance. The objectives of this work were to (1) radiation hybrid (RH) map bovine RIG-I and MAVS and (2) perform comparative sequence analysis of partial genomic sequence from each gene.

View Article and Find Full Text PDF

The elimination of altered RBC was investigated morphometrically in the rat spleen by determination of the percentage of erythrophagosomes in macrophages. PHZ and diamide treated RBC led to a time dependent increase of the percentage of erythrophagosomes in comparison to normal spleens. The deformability of the target RBC was lowered as revealed by measurements with glass micropipettes.

View Article and Find Full Text PDF