Publications by authors named "Paerl H"

Article Synopsis
  • Phytoplankton in lakes capture atmospheric CO2 and convert it to organic carbon (OC), but most OC is recycled back to the atmosphere as CO and methane (CH), contributing to climate change.
  • * The research identifies a 3.1-fold increase in CO-equivalent emissions over the next century, exacerbated by climate warming.
  • * While climate change boosts phytoplankton growth in many lakes, it can also negatively impact their ability to sequester CO-eq, potentially weakening this feedback loop over time.
View Article and Find Full Text PDF

Impoundments play a vital role as nutrient sinks, capable of retaining and exporting nitrogen (N) and phosphorus (P) at different rates. The imbalance in N and P stoichiometry relative to phytoplankton demand often determines the limiting nutrient of phytoplankton biomass in these systems. This critical factor has a substantial impact on the management of eutrophication, encompassing the formulation of nutrient control strategies and the setting of regulatory thresholds.

View Article and Find Full Text PDF

Cyanobacterial harmful algal blooms (CyanoHABs) are a major concern for water quality, public health and viability of aquatic ecosystems. Increased inputs of nutrients, i.e.

View Article and Find Full Text PDF
Article Synopsis
  • - The study analyzes 750 metagenomic data sets from 103 lakes globally to assess the distribution of cyanobacterial communities and the genes responsible for producing toxic metabolites, revealing that nearly half of these lakes have medium to high health risks due to cyanobacteria.
  • - It identified East Asia and South Asia as the regions with the highest concern, especially in rapidly industrializing and urbanizing developing countries, and established a method using machine learning to map potential health risks linked to environmental factors.
  • - The research presents a comprehensive approach to monitoring cyanobacterial health risks, highlighting geographical variations and emphasizing the urgent need for management strategies to address threats to aquatic ecosystems and human health.
View Article and Find Full Text PDF
Article Synopsis
  • Climate change is leading to more intense and frequent heavy rainfall, which affects nutrient movement into rivers, particularly in areas like southeast China with complex land use.
  • A study found that as rainfall intensity increases, total nitrogen (TN) and total phosphorus (TP) concentrations in a river rise, with a notable spike during heavy rainfall events, contributing significantly to annual nutrient loading and potentially worsening eutrophication in nearby lakes.
  • The research highlights that cropland and residential areas are major sources of these nutrients, while forested areas have better drainage but still pose pollution risks, emphasizing the need for targeted nutrient management strategies in response to rainfall patterns.
View Article and Find Full Text PDF

Lake Erie algal bloom discussions have historically focused on cyanobacteria, with foundational "blooms like it hot" and "high nutrient" paradigms considered as primary drivers behind cyanobacterial bloom success. Yet, recent surveys have rediscovered winter-spring diatom blooms, introducing another key player in the Lake Erie eutrophication and algal bloom story which has been historically overlooked. These blooms (summer winter) have been treated as solitary events separated by spatial and temporal gradients.

View Article and Find Full Text PDF

Hypoxia in coastal ecosystems is increasing as a result of water quality declines from nutrient pollution. Hypoxia negatively affects fish populations and marine life, limiting their spawning habitats, population size, and growth. In this study, two approaches were used to understand the effect of hypoxia on the chorusing and reproductive behavior of fishes in estuaries.

View Article and Find Full Text PDF

Cylindrospermopsin (CYN) can induce phytoplankton community to secrete alkaline phosphatase (ALP), which is one of the important strategies for the bloom-forming cyanobacterium Raphidiopsis to thrive in extremely low-phosphorus (P) waters. However, how bacterioplankton community, another major contributor to ALPs in waters, couples to Raphidiopsis through CYN, and the role of this coupling in supporting the dominance of Raphidiopsis in nature remain largely unknown. Here, we conducted microcosm experiments to address this knowledge gap, using a combination of differential filtration-based and metagenomics-based methods to identify the sources of ALPs.

View Article and Find Full Text PDF

Water quality of eutrophic lakes is threatened by harmful cyanobacterial blooms, which are favored by summer heatwaves and expected to intensify with global warming. Societal demands on surface water for drinking, irrigation and recreation are also highest in summer, especially during dry and warm conditions. Here, we analyzed trends in online searches to investigate how public awareness of cyanobacterial blooms is impacted by temperature in nine different countries over almost twenty years.

View Article and Find Full Text PDF

Cyanobacterial harmful algal blooms (CHABs) have become a persistent seasonal problem in the upper San Francisco Estuary, California also known as the Sacramento-San Joaquin Delta (Delta). The Delta is comprised of a complex network of open water bodies, channels, and sloughs. The terminus of the Stockton Channel is an area identified as a CHAB "hotspot.

View Article and Find Full Text PDF
Article Synopsis
  • * A study found that while overall freshwater quality from 2012-2015 was good, tourism significantly impacted water quality in the Wanquan River, which fluctuated in dissolved oxygen content.
  • * Monitoring is essential for managing tourism's effects on water quality, and a developed neural network model could accurately predict water quality changes, highlighting the relationship between water quality, livelihoods, and economic development in Hainan.
View Article and Find Full Text PDF

Global eutrophication and climate warming exacerbate production of cyanotoxins such as microcystins (MCs), presenting risks to human and animal health. Africa is a continent suffering from severe environmental crises, including MC intoxication, but with very limited understanding of the occurrence and extent of MCs. By analysing 90 publications from 1989 to 2019, we found that in various water bodies where MCs have been detected so far, the concentrations were 1.

View Article and Find Full Text PDF

Following the passage of a tropical cyclone (TC) the changes in temperature, salinity, nutrient concentration, water clarity, pigments and phytoplankton taxa were assessed at 42 stations from eight sites ranging from the open ocean, through the coastal zone and into estuaries. The impacts of the TC were estimated relative to the long-term average (LTA) conditions as well as before and after the TC. Over all sites the most consistent environmental impacts associated with TCs were an average 41% increase in turbidity, a 13% decline in salinity and a 2% decline in temperature relative to the LTA.

View Article and Find Full Text PDF

Harmful algal blooms (HABs) caused by the toxin-producing cyanobacteria spp., can increase water column pH. While the effect(s) of these basified conditions on the bloom formers are a high research priority, how these pH shifts affect other biota remains understudied.

View Article and Find Full Text PDF

Cyanobacterial blooms in freshwater systems are a global threat to human and aquatic ecosystem health, exhibiting particularly harmful effects when toxin-producing taxa are present. While climatic change and nutrient over-enrichment control the global expansion of total cyanobacterial blooms, it remains unknown to what extent this expansion reflected cyanobacterial assemblage due to the scarcity of long-term monitoring data. Here we use high-throughput sequencing of sedimentary DNA to track ∼100 years of changes in cyanobacterial community in hyper-eutrophic Lake Taihu, China's third largest freshwater lake and the key water source for ∼30 million people.

View Article and Find Full Text PDF

Multiple stressors are continuously deteriorating surface waters worldwide, posing many challenges for their conservation and restoration. Combined effect types of multiple stressors range from single-stressor dominance to complex interactions. Identifying prevalent combined effect types is critical for environmental management, as it helps to prioritise key stressors for mitigation.

View Article and Find Full Text PDF

Billions of years ago, the Earth's waters were dominated by cyanobacteria. These microbes amassed to such formidable numbers, they ushered in a new era-starting with the Great Oxidation Event-fuelled by oxygenic photosynthesis. Throughout the following eon, cyanobacteria ceded portions of their global aerobic power to new photoautotrophs with the rise of eukaryotes (i.

View Article and Find Full Text PDF

In addition to obvious negative effects on water quality in eutrophic aquatic ecosystems, recent work suggests that cyanobacterial harmful algal blooms (CHABs) also impact air quality via emissions carrying cyanobacterial cells and cyanotoxins. However, the environmental controls on CHAB-derived aerosol and its potential public health impacts remain largely unknown. Accordingly, the aims of this study were to 1) investigate the occurrence of microcystins (MC) and putatively toxic cyanobacterial communities in particulate matter ≤ 2.

View Article and Find Full Text PDF

Nutrient storage is considered a critical strategy for algal species to adapt to a fluctuating nutrient supply. Luxury phosphorus (P) uptake into storage of polyphosphate extends the duration of cyanobacterial dominance and their blooms under P deficiency. However, it is unclear whether nitrogen (N) storage in the form of cyanophycin supports persistent cyanobacterial dominance or blooms in the tropics where N deficiency commonly occurs in summer.

View Article and Find Full Text PDF

China has made a concerted effort to successfully improve water quality of rivers, but lake water quality has not improved. Lakes require controls on both catchment external nutrient loads and in-lake internal loads, where nature-based solutions are coupled with engineered systems to achieve the United Nations Sustainable Development Goals (SDGs).

View Article and Find Full Text PDF

Algal blooms (ABs) in inland lakes have caused adverse ecological effects, and health impairment of animals and humans. We used archived Landsat images to examine ABs in lakes (>1 km ) around the globe over a 37-year time span (1982-2018). Out of the 176032 lakes with area >1 km detected globally, 863 were impacted by ABs, 708 had sufficiently long records to define a trend, and 66% exhibited increasing trends in frequency ratio (FRQR, ratio of the number of ABs events observed in a year in a given lake to the number of available Landsat images for that lake) or area ratio (AR, ratio of annual maximum area covered by ABs observed in a lake to the surface area of that lake), while 34% showed a decreasing trend.

View Article and Find Full Text PDF

Harmful cyanobacterial blooms (CyanoHABs) are expanding world-wide, adversely affecting aquatic food production, recreational and tourism activities and safe drinking water supplies. China's inland waters have been increasingly threatened by CyanoHABs during the past several decades. The environmental factors controlling CyanoHABs are highly variable in space and time in China due to significant variations in climate, geography, geological and geochemical conditions among its many regions.

View Article and Find Full Text PDF

Harmful cyanobacterial blooms (CyanoHABs) are a rapidly proliferating global problem, threatening the use and sustainability of our freshwater resources. In recent decades, the United States, China, and other developed and developing countries threatened by CyanoHAB expansion have established collaborative efforts aimed at mitigating and managing this environmental and human health problem. However, an escalating negative political climate and restrictive policies on scientific exchange threaten these efforts.

View Article and Find Full Text PDF