J Immunother Cancer
October 2020
Background: Blood-based biomarkers of anti-solid tumor immune checkpoint blockade (ICB) response are lacking. We hypothesized that changes in systemic cytokine levels with the initial doses of programmed cell death protein 1 (PD-1) pathway inhibitors would correlate with clinical responses. New ultrasensitive ELISA technology enables quantitation of plasma proteins in sub-picogram-per-milliliter concentrations.
View Article and Find Full Text PDFMany protein biomarkers occur at very low concentrations in biofluids like blood and saliva, and ultrasensitive detection methods are required in order to measure them. Approaches such as digital enzyme-linked immunosorbent assays (ELISA) and single molecule arrays (Simoa) have been developed to accurately quantitate protein concentrations as low as attomolar levels. Although these techniques are being implemented in research and clinical laboratories to develop ultrasensitive clinical diagnostic assays, the size and cost of the instruments required to run these digital assays have precluded them from being implemented into point-of-care diagnostic formats.
View Article and Find Full Text PDFRecently, allosteric transcription factors (TFs) were identified as a novel class of biorecognition elements for in vitro sensing, whereby an indicator of the differential binding affinity between a TF and its cognate DNA exhibits dose-dependent responsivity to an analyte. Described is a modular bead-based biosensor design that can be applied to such TF-DNA-analyte systems. DNA-functionalized beads enable efficient mixing and spatial separation, while TF-labeled semiconductor quantum dots serve as bright fluorescent indicators of the TF-DNA bound (on bead) and unbound states.
View Article and Find Full Text PDFMeasurements of very low levels of biomolecules, including proteins and nucleic acids, remain a critical challenge in many clinical diagnostic applications due to insufficient sensitivity. While digital measurement methods such as Single Molecule Arrays (Simoa), or digital ELISA, have made significant advances in sensitivity, there are still many potential disease biomarkers that exist in accessible biofluids at levels below the detection limits of these techniques. To overcome this barrier, we have developed a simple strategy for single molecule counting, dropcast single molecule assays (dSimoa), that enables more target molecules to be counted through increased sampling efficiency and with a simpler workflow.
View Article and Find Full Text PDFMany proteins are present at low concentrations in biological samples, and therefore, techniques for ultrasensitive protein detection are necessary. To overcome challenges with sensitivity, the digital enzyme-linked immunosorbent assay (ELISA) was developed, which is 1000× more sensitive than conventional ELISA and allows sub-femtomolar protein detection. However, this sensitivity is still not sufficient to measure many proteins in various biological samples, thereby limiting our ability to detect and discover biomarkers.
View Article and Find Full Text PDFNucleic acids are important biomarkers for disease detection, monitoring, and treatment. Advances in technologies for nucleic acid analysis have enabled discovery and clinical implementation of nucleic acid biomarkers. However, challenges remain with technologies for nucleic acid analysis, thereby limiting the use of nucleic acid biomarkers in certain contexts.
View Article and Find Full Text PDF