Hexanucleotide repeat expansions represent the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, though the mechanisms by which such expansions cause neurodegeneration are poorly understood. We report elevated levels of DNA-RNA hybrids (R-loops) and double strand breaks in rat neurons, human cells and C9orf72 ALS patient spinal cord tissues. Accumulation of endogenous DNA damage is concomitant with defective ATM-mediated DNA repair signaling and accumulation of protein-linked DNA breaks.
View Article and Find Full Text PDFIntronic GGGGCC repeat expansions in are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Two major pathologies stemming from the hexanucleotide RNA expansions (HREs) have been identified in postmortem tissue: intracellular RNA foci and repeat-associated non-ATG dependent (RAN) dipeptides, although it is unclear how these and other hallmarks of disease contribute to the pathophysiology of neuronal injury. Here, we describe two novel lines of mice that overexpress either 10 pure or 102 interrupted GGGGCC repeats mediated by adeno-associated virus (AAV) and recapitulate the relevant human pathology and disease-related behavioural phenotypes.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a devastating and incurable neurodegenerative disease, characterised by progressive failure of the neuromuscular system. A (G4C2)n repeat expansion in C9ORF72 is the most common genetic cause of ALS and frontotemporal dementia (FTD). To date, the balance of evidence indicates that the (G4C2)n repeat causes toxicity and neurodegeneration via a gain-of-toxic function mechanism; either through direct RNA toxicity or through the production of toxic aggregating dipeptide repeat proteins.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a severe autosomal recessive disease caused by a genetic defect in the survival motor neuron 1 (SMN1) gene, which encodes SMN, a protein widely expressed in all eukaryotic cells. Depletion of the SMN protein causes muscle weakness and progressive loss of movement in SMA patients. The field of gene therapy has made major advances over the past decade, and gene delivery to the central nervous system (CNS) by in vivo or ex vivo techniques is a rapidly emerging field in neuroscience.
View Article and Find Full Text PDFDespite the widely held belief that Parkinson's disease is caused by both underlying genetics and exposure to environmental risk factors, it is still widely modelled in preclinical models using a single genetic or neurotoxic insult. This single-insult approach has resulted in a variety of models that are limited with respect to their aetiological, construct, face and/or predictive validity. Thus, the aim of the current study was to investigate the interplay between genes and the environment as an alternative approach to modelling Parkinson's disease.
View Article and Find Full Text PDFChronic neuroinflammation has been established as one of the many processes involved in the pathogenesis of Parkinson's disease (PD). Because of this, researchers have attempted to replicate this pathogenic feature in animal models using the potent inflammagen, lipopolysaccharide (LPS), in order to gain better understanding of immune-mediated events in PD. However, although the effect of intra-cerebral LPS on neuroinflammation and neurodegeneration has been relatively well characterised, its impact on motor function has been less well studied.
View Article and Find Full Text PDF