Thiamethoxam (THM) and imidacloprid (IMI), are environmentally persistent neonicotinoid insecticides which have become increasingly favored in the past decade due to their specificity as insect neurotoxicants. However, neonicotinoids have been implicated as a potential contributing factor in Colony Collapse Disorder (CCD) which affects produce production on a global scale. The present study characterizes the bioremediation potential of six bacterial species: Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas aeruginosa, Alcaligenes faecalis, Escherichia coli, and Streptococcus lactis.
View Article and Find Full Text PDFPlastic wastes burdening Earth's water and accumulating on land, releasing toxic leachates, are one of the greatest global threats of our time. Bisphenol-A (BPA), a potent endocrine disrupting compound, is a synthetic ingredient of the polycarbonate plastics and epoxy resins used in food containers, cans, and water bottles. Bisphenol-A's rising concentrations in the environment require a sustainable alternative to current removal practices, which are expensive and/or ecologically unsafe.
View Article and Find Full Text PDFThe arsenic (As) hyperaccumulating fern species Pteris vittata (PV) is capable of accumulating large quantities of As in its aboveground tissues. Transformation to AsIII and vacuolar sequestration is believed to be the As detoxification mechanism in PV. Here we present evidence for a preponderance of exocellular As in fronds of Pteris vittata despite numerous reports of a tolerance mechanism involving intracellular compartmentalization.
View Article and Find Full Text PDFVetiver grass is an ideal plant for 2,4,6-trinitrotoluene (TNT) phytoremediation, due to its ability to tolerate and metabolize TNT as previously reported. The current study is the first attempt to investigate the changes in the proteomic profile of a plant under TNT stress. Vetiver plants were grown in nutrient media with varying concentrations of TNT (0, 25, 50, and 100 mg L) for 10 days.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2016
Environmental contamination by antibiotics not only perturbs the ecological balance but also poses a risk to human health by promoting the development of multiantibiotic-resistant bacteria. This study focuses on identifying the biochemical pathways associated with tetracycline (TC) transformation/degradation in vetiver grass that has the potential to be used as a biological remediation system in TC-contaminated water sources. A hydroponic experimental setup was used with four initial TC concentrations (0, 5, 35, 75 ppm), and TC uptake was monitored over a 30-day period.
View Article and Find Full Text PDFOne of the major challenges in developing an effective phytoremediation technology for 2,4,6-trinitrotoluene (TNT) contaminated soils is limited plant uptake resulting from low solubility of TNT. The effectiveness of urea as a solubilizing agent in increasing plant uptake of TNT in hydroponic systems has been documented. Our preliminary greenhouse experiments using urea were also very promising, but further characterization of the performance of urea in highly-complex soil-solution was necessary.
View Article and Find Full Text PDFThe presence of veterinary and human antibiotics in soil and surface water is an emerging environmental concern. The current study was aimed at evaluating the potential of using vetiver grass as a phytoremediation agent in removing Tetracycline (TC) from aqueous media. The study determined uptake, translocation, and transformation of TC in vetiver grass as function of initial antibiotic concentrations and exposure time.
View Article and Find Full Text PDFLead (Pb) has limited solubility in the soil environment owing to complexation with various soil components. Although total soil Pb concentrations may be high at a given site, the fraction of soluble Pb that plants can extract is very small, which is the major limiting factor for Pb phytoremediation. The symbiotic effect of arbuscular mycorrhizal (AM) fungus, Glomus mosseae was examined on growth and phytoextraction of lead (Pb) by vetiver grass [Chrysopogon zizanioides (L.
View Article and Find Full Text PDFThe high affinity of vetiver grass for 2,4,6 trinitrotoluene (TNT) and the catalytic effectiveness of urea in enhancing plant uptake of TNT in hydroponic media we earlier demonstrated were further illustrated in this soil-pot-experiment. Complete removal of TNT in urea-treated soil was accomplished by vetiver at the low initial soil-TNT concentration (40 mg kg(-1)), masking the effect of urea. Doubling the initial TNT concentration (80 mg kg(-1)) significantly (p<0.
View Article and Find Full Text PDF