Mechanical ventilation is a known risk factor for delirium, a cognitive impairment characterized by dysfunction of the frontal cortex and hippocampus. Although IL-6 is upregulated in mechanical ventilation-induced lung injury (VILI) and may contribute to delirium, it is not known whether the inhibition of systemic IL-6 mitigates delirium-relevant neuropathology. To histologically define neuropathological effects of IL-6 inhibition in an experimental VILI model, VILI was simulated in anesthetized adult mice using a 35 cc/kg tidal volume mechanical ventilation model.
View Article and Find Full Text PDFAstrocytes protect neurons during cerebral injury through several postulated mechanisms. Recent therapeutic attention has focused on enhancing or augmenting the neuroprotective actions of astrocytes but in some instances astrocytes can assume a neurotoxic phenotype. The signaling mechanisms that drive astrocytes toward a protective versus toxic phenotype are not fully known but cell-cell signaling via proteases acting on cell-specific receptors underlies critical mechanistic steps in neurodevelopment and disease.
View Article and Find Full Text PDFThrombin and activated protein C (APC) are known coagulation factors that exhibit profound effects in brain by acting on the protease activated receptor (PAR). The wild type (WT) proteases appear to impact cell survival powerfully, and therapeutic forms of APC are under development. Engineered recombinant thrombin or APC were designed to separate their procoagulant or anticoagulant effects from their cytoprotective properties.
View Article and Find Full Text PDFBackground: Mechanical ventilation is strongly associated with cognitive decline after critical illness. This finding is particularly evident among older individuals who have pre-existing cognitive impairment, most commonly characterized by varying degrees of cerebral amyloid-β accumulation, neuroinflammation, and blood-brain barrier dysfunction. We sought to test the hypothesis that short-term mechanical ventilation contributes to the neuropathology of cognitive impairment by (i) increasing cerebral amyloid-β accumulation in mice with pre-existing Alzheimer's disease pathology, (ii) increasing neurologic and systemic inflammation in wild-type mice and mice with pre-existing Alzheimer's disease pathology, and (iii) increasing hippocampal blood-brain barrier permeability in wild-type mice and mice with pre-existing Alzheimer's disease pathology.
View Article and Find Full Text PDFTherapeutic hypothermia (TH) benefits survivors of cardiac arrest and neonatal hypoxic-ischemic injury and may benefit stroke patients. Large TH clinical trials, however, have shown mixed results. Given the substantial pre-clinical literature supporting TH, we explored possible mechanisms for clinical trial variability.
View Article and Find Full Text PDFBackground: Hypothermia is the most potent protective therapy available for cerebral ischemia. In experimental models, cooling the brain even a single degree Celsius alters outcome after global and focal ischemia. Difficulties translating therapeutic hypothermia to patients with stroke or after cardiac arrest include: uncertainty as to the optimal treatment duration; best target-depth temperature; and longest time delay after which therapeutic hypothermia won't benefit.
View Article and Find Full Text PDFThe equilibrium potential for GABA-A receptor mediated currents (EGABA) in neonatal central neurons is set at a relatively depolarized level, which is suggested to be caused by a low expression of K+/Cl- co-transporter (KCC2) but a relatively high expression of Na+-K+-Cl- cotransporter (NKCC1). Theta-burst stimulation (TBS) in stratum radiatum induces a negative shift in EGABA in juvenile hippocampal CA1 pyramidal neurons. In the current study, the effects of TBS on EGABA in neonatal and juvenile hippocampal CA1 neurons and the underlying mechanisms were examined.
View Article and Find Full Text PDFBackground And Purpose: Transcranial near-infrared laser therapy (TLT) is a promising and novel method to promote neuroprotection and clinical improvement in both acute and chronic neurodegenerative diseases such as acute ischemic stroke (AIS), traumatic brain injury (TBI), and Alzheimer's disease (AD) patients based upon efficacy in translational animal models. However, there is limited information in the peer-reviewed literature pertaining to transcranial near-infrared laser transmission (NILT) profiles in various species. Thus, in the present study we systematically evaluated NILT characteristics through the skull of 4 different species: mouse, rat, rabbit and human.
View Article and Find Full Text PDFBackground And Purpose: 3K3A-activated protein C (APC) protects young, healthy male rodents after ischemic stroke. 3K3A-APC is currently under development as a neuroprotectant for acute ischemic stroke in humans. Stroke Therapy Academic Industry Roundtable recommends that after initial studies in young, healthy male animals, further studies should be performed in females, aged animals, and animals with comorbid conditions.
View Article and Find Full Text PDFBackground: Somatostatin receptors (SSTRs) and opioid receptors (ORs) belong to the superfamily of G-protein coupled receptors and function as negative regulators of cell proliferation in breast cancer. In the present study, we determined the changes in SSTR subtype 2 (SSTR2) and μ, δ and κ-ORs expression, signaling cascades and apoptosis in three different breast cancer cells namely MCF-7, MDA-MB231 and T47D.
Methods: Immunocytochemistry and western blot analysis were employed to study the colocalization and changes in MAPKs (ERK1/2 and p38), cell survival pathway (PI3K/AKT) and tumor suppressor proteins (PTEN and p53) in breast cancer cell lines.
J-147 is a broad spectrum neuroprotective phenyl hydrazide compound with significant neurotrophic properties related to the induction of brain-derived neurotrophic factor (BDNF). Because this molecule is pleiotropic, it may have substantial utility in the treatment of a wide range of neurodegenerative diseases including acute ischemic stroke (AIS), traumatic brain injury(TBI), and Alzheimer's disease(AD) where both neuroprotection and neurotrophism would be beneficial. Because of the pleiotropic actions of J-147, we sought to determine the safety profile of the drug using multiple assay analysis.
View Article and Find Full Text PDFPre-clinical development of therapy for acute ischemic stroke requires robust animal models; the rodent middle cerebral artery occlusion (MCAo) model using a nylon filament inserted into the internal carotid artery is the most popular. Drug screening requires targeted delivery of test substance in a controlled manner. To address these needs, we developed a novel method for delivering substances directly into the ischemic brain during MCAo in the awake rat.
View Article and Find Full Text PDFSomatostatin (SST)-positive medium-sized aspiny interneurons are selectively spared in excitotoxicity. The biological effects of SST are mediated via five different receptors, namely somatostatin receptor (SSTR)1-5; however, SSTR subtype spared in excitotoxicity and involved in neuroprotection is not known. Dopamine- and cAMP-regulated phosphoprotein (DARPP-32) is predominantly expressed in medium-sized projection neurons that are most vulnerable in excitotoxicity.
View Article and Find Full Text PDFLong term depression (LTD) in the CA1 region of the hippocampus, induced with a 20-Hz, 30 s tetanus to Schaffer collaterals, is enhanced in sleep-deprived (SD) rats. In the present study, we investigated the role of metabotropic glutamate receptors (mGluRs), γ-aminobutyric acid (GABA) B receptors (GABA(B)-Rs) and N-methyl-D-aspartic acid receptors (NMDARs) in the LTD of the population excitatory postsynaptic potential (pEPSP). The requirement of Ca(2+) from L- and T-type voltage-gated calcium channels (VGCCs) and intracellular stores was also studied.
View Article and Find Full Text PDFBackground: Selective degeneration of medium spiny neurons and preservation of medium sized aspiny interneurons in striatum has been implicated in excitotoxicity and pathophysiology of Huntington's disease (HD). However, the molecular mechanism for the selective sparing of medium sized aspiny neurons and vulnerability of projection neurons is still elusive. The pathological characteristic of HD is an extensive reduction of the striatal mass, affecting caudate putamen.
View Article and Find Full Text PDFEpidermal growth factor (EGF) regulates normal and tumor cell proliferation via epidermal growth factor receptor (EGFR) phosphorylation, homo- or heterodimerization and activation of mitogen-activated protein kinases (MAPKs) and PI3K/AKT cell survival pathways. In contrast, SST via activation of five different receptor subtypes inhibits cell proliferation and has been potential target in tumor treatment. To gain further insight for the effect of SSTRs on EGFR activated signaling, we determine the role of SSTR1 and SSTR1/5 in human embryonic kidney (HEK) 293 cells.
View Article and Find Full Text PDFEpidermal growth factor through the stimulation of epidermal growth factor receptor (EGFR) plays a critical role in the activation of MAPKs and phosphatidylinositol-3-protein kinase/AKT cell survival pathways attributed in many pathological conditions. At the cellular level, such functions involve EGFR overactivation and phosphorylation. In the present study, we describe that human embryonic kidney-293 cells transfected with somatostatin (SST) receptor 5 (SSTR5) exhibit inhibition of EGFR phosphorylation and modulate MAPK and phosphatidylinositol-3-protein kinase/AKT cell survival signaling.
View Article and Find Full Text PDFObjective: Impaired cardiovascular function in diabetes is partially attributed to pathological overexpression of inducible nitric oxide synthase (iNOS) in cardiovascular tissues. We examined whether the hyperglycemia-induced increased expression of iNOS is protein kinase C-beta(2) (PKCbeta(2)) dependent and whether selective inhibition of PKCbeta reduces iNOS expression and corrects abnormal hemodynamic function in streptozotocin (STZ)-induced diabetic rats.
Research Design And Methods: Cardiomyocytes and aortic vascular smooth muscle cells (VSMC) from nondiabetic rats were cultured in low (5.
Apolipoprotein D (ApoD) is widely distributed in central and peripheral nervous system. ApoD expression has been shown to increase in several neurodegenerative and neuropsychiatric disorders, as well as during regeneration in the nervous system. Like ApoD, in the central nervous system somatostatin (SST) is widely present and functions as neurotransmitter and neuromodulator.
View Article and Find Full Text PDFIn the present study using indirect immunofluorescence immunohistochemistry, co-immunoprecipitation and western blot analysis we determined the colocalization of dopamine receptors 1-5 and dopamine and cAMP-regulated phosphoprotein (DARPP-32) in rat brain cortex and striatum. All five DR subtypes and DARPP-32 were expressed in rat brain cortex and striatum. DARPP-32 positive neurons displayed comparative colocalization with DR1-5.
View Article and Find Full Text PDFSomatostatin receptors show great diversity in response to agonist mediated receptor-specific homo- and heterodimerizations. Here, using photobleaching-fluorescence resonance energy transfer, immunocytochemistry, western blot and co-immunoprecipitation, we investigated dimerization, trafficking, coupling to adenylyl cyclase and signaling of human somatostatin receptor-4 (hSSTR4) in HEK-293 cells. We also determined the role of the C-tail of hSSTR4 on physiological responses of the cells.
View Article and Find Full Text PDF