Publications by authors named "Padmanabhan Rajan"

Bioacoustic classification often suffers from the lack of labeled data. This hinders the effective utilization of state-of-the-art deep learning models in bioacoustics. To overcome this problem, the authors propose a deep metric learning-based framework that provides effective classification, even when only a small number of per-class training examples are available.

View Article and Find Full Text PDF

This paper proposes a multi-layer alternating sparse-dense framework for bird species identification. The framework takes audio recordings of bird vocalizations and produces compressed convex spectral embeddings (CCSE). Temporal and frequency modulations in bird vocalizations are ensnared by concatenating frames of the spectrogram, resulting in a high dimensional and highly sparse super-frame-based representation.

View Article and Find Full Text PDF