Publications by authors named "Padmanaban Annamalai"

The rational design and demonstration of a facile sequential template-mediated strategy to construct noble-metal-free efficient bifunctional electrocatalysts for efficient oxygen evolution reaction (OER) and electrocatalytic detection of hazardous environmental 4-nitrophenol (4-NP) have continued as a major challenging task. Herein, we construct a novel Ag@polymer/NiAl LDH (designated as APL) nanohybrid as an efficient bifunctional electrocatalyst by a simple hydrolysis method. The well-fabricated APL/GCE exhibited an extensive linear range from 0.

View Article and Find Full Text PDF

The importance of plant small heat shock proteins (sHsp) in multiple cellular processes has been evidenced by their unusual abundance and diversity; however, little is known about their biological role. Here, we characterized the in vitro chaperone activity and subcellular localization of nodulin 22 of Phaseolus vulgaris (PvNod22; common bean) and explored its cellular function through a virus-induced gene silencing-based reverse genetics approach. We established that PvNod22 facilitated the refolding of a model substrate in vitro, suggesting that it acts as a molecular chaperone in the cell.

View Article and Find Full Text PDF

Plants have a demonstrated potential for large-scale, rapid production of recombinant proteins for diverse product applications, including subunit vaccines and monoclonal antibodies. In this field, the accent has recently shifted from the engineering of "edible" vaccines based on stable expression of target protein in transgenic or transplastomic plants to the development of purified formulated vaccines that are delivered via injection. The injectable vaccines are commonly produced using transient expression of target gene delivered into genetically unmodified plant host via viral or bacterial vectors.

View Article and Find Full Text PDF

Background: Common bean (Phaseolus vulgaris L.) is a crop of economic and nutritious importance in many parts of the world. The lack of genomic resources have impeded the advancement of common bean genomics and thereby crop improvement.

View Article and Find Full Text PDF

Soybean rust, caused by Phakopsora pachyrhizi, is a destructive foliar disease in nearly all soybean-producing countries. To identify genes controlling resistance to soybean rust, transcriptome profiling was conducted in resistant and susceptible Glycine tomentella genotypes triggered by P. pachyrhizi infection.

View Article and Find Full Text PDF

Agroinfiltration is a simple, efficient, and powerful approach for transient expression of viral genes as well as DNA-based expression of full-length RNA genomes of plant viruses for studies leading to understanding of replication, movement, and assembly. Most importantly, it results in synchronous delivery of Agrobacterium transformants to a majority of cells encompassing the infiltrated area and is therefore ideal for examining the biological activities of viruses having multipartite genomes. Because of the high transformation rate and efficient accumulation of mRNAs, the method is also ideal for analyzing biological activities of viral genomes with defective replication and cell-to-cell movement characteristics.

View Article and Find Full Text PDF

Analysis of viral RNA encapsidation assay provides a rapid means of assaying which of the progeny RNA are competent for packaging into stable mature virions. Generally, a parallel analysis of total RNA and RNA obtained from purified virions is advisable for accurate interpretation of the results. In this, we describe a series of in vivo assays in which viral RNA encapsidation can be verified.

View Article and Find Full Text PDF

Flock house virus (FHV), a bipartite RNA virus of insects and a member of the Nodaviridae family, shares viral replication features with the tripartite brome mosaic virus (BMV), an RNA virus that infects plants and is a member of the Bromoviridae family. In BMV and FHV, genome packaging is coupled to replication, a widely conserved mechanism among positive-strand RNA viruses of diverse origin. To unravel the events that modulate the mechanism of replication-coupled packaging, in this study, we have extended the transfer DNA (T-DNA)-based agroinfiltration system to express functional genome components of FHV in plant cells (Nicotiana benthamiana).

View Article and Find Full Text PDF

In Brome mosaic virus (BMV), genomic RNA1 (gB1) and RNA2 (gB2), encoding the replication factors, are packaged into two separate virions, whereas genomic RNA3 (gB3) and its subgenomic coat protein (CP) mRNA (sgB4) are copackaged into a third virion. In vitro assembly assays performed between a series of deletion variants of sgB4 and wild-type (wt) CP subunits demonstrated that packaging of sgB4 is independent of sequences encoding the CP open reading frame. To confirm these observations in vivo and to unravel the mechanism of sgB4 copackaging, an Agrobacterium-mediated transient in vivo expression system (P.

View Article and Find Full Text PDF

The four encapsidated RNAs of brome mosaic virus (BMV; B1, B2, B3, and B4) contain a highly conserved 3' 200-nucleotide (nt) region encompassing the tRNA-like structure (TLS) which is required for packaging in vitro (Y. G. Choi, T.

View Article and Find Full Text PDF

Satellite RNA of Bamboo mosaic virus (satBaMV), a single-stranded mRNA type satellite encoding a protein of 20 kDa (P20), depends on the helper BaMV for replication and encapsidation. Two satBaMV isolates, BSF4 and BSL6, exhibit distinctly differential phenotypes in Nicotiana benthamiana plants when coinoculated with BaMV RNA. BSL6 significantly reduces BaMV RNA replication and suppresses the BaMV-induced symptoms, whereas BSF4 does not.

View Article and Find Full Text PDF

Most double-stranded RNA viruses have a characteristic capsid consisting of 60 asymmetric coat protein dimers in a so-called T = 2 organization, a feature probably related to their unique life cycle. These capsids organize the replicative complex(es) that is actively involved in genome transcription and replication. Available structural data indicate that their RNA-dependent RNA polymerase (RDRP) is packaged as an integral capsid component, either as a replicative complex at the pentameric vertex (as in reovirus capsids) or as a fusion protein with the coat protein (as in some totivirus).

View Article and Find Full Text PDF

To begin elucidation of the relationship between Brome mosaic virus (BMV) replication and encapsidation, we used a T-DNA-based Agrobacterium-mediated transient expression (agroinfiltration) system in Nicotiana benthamiana leaves to express either individual or desired pairs of the three genomic RNAs. The packaging competence of these RNAs into virions formed by the transiently expressed coat protein (CP) was analyzed. We found that in the absence of a functional replicase, assembled virions contained non-replicating viral RNAs (RNA1 or RNA2 or RNA3 or RNA1 + RNA3 or RNA2 + RNA3) as well as cellular RNAs.

View Article and Find Full Text PDF

The N-proximal region of cowpea chlorotic mottle virus (CCMV) capsid protein (CP) contains an arginine-rich RNA binding motif (ARM) that is also found in the CPs of other members of Bromoviridae and in other RNA binding proteins such as the Tat and Rev proteins of human immunodeficiency virus. To assess the critical role played by this motif during encapsidation, a variant of CCMV RNA3 (C3) precisely lacking the ARM region (C3/Delta919) of its CP gene was constructed. The biology and the competence of the matured CP derived in vivo from C3/Delta919 to assemble and package progeny RNA was examined in whole plants.

View Article and Find Full Text PDF

The 3' ends of three genomic RNAs (gRNAs) of cowpea chlorotic mottle virus (CCMV) terminate in a highly conserved tRNA-like structure (3'TLS). To examine the intrinsic role played the 3'TLS in packaging, the competence of each gRNA lacking the 3' TLS (DeltaTLS-gRNA) to interact with dissociated coat protein (CP) subunits and form virions was assayed in vitro. In contrast to the well established requirement for the participation of either viral 3'TLS or host-tRNAs in the assembly of RNA-containing virions in brome mosaic virus (BMV; Choi, Y, G.

View Article and Find Full Text PDF

The satellite RNA of Bamboo mosaic virus (satBaMV) contains on open reading frame for a 20-kDa protein that is flanked by a 5'-untranslated region (UTR) of 159 nucleotides (nt) and a 3'-UTR of 129 nt. A secondary structure was predicted for the 5'-UTR of satBaMV RNA, which folds into a large stem-loop (LSL) and a small stem-loop. Enzymatic probing confirmed the existence of LSL (nt 8-138) in the 5'-UTR.

View Article and Find Full Text PDF