Ca is a highly abundant ion involved in numerous biological processes, particularly in multicellular eukaryotic organisms where it exerts many of these functions through interactions with Ca binding proteins. The laminin N-terminal (LN) domain is found in members of the laminin and netrin protein families where it plays a critical role in the function of these proteins. The LN domain of laminins and netrins is a Ca binding domain and in many cases requires Ca to perform its biological function.
View Article and Find Full Text PDFNetrin-1 is a bifunctional chemotropic guidance cue that plays key roles in diverse cellular processes including axon pathfinding, cell migration, adhesion, differentiation, and survival. Here, we present a molecular understanding of netrin-1 mediated interactions with glycosaminoglycan chains of diverse heparan sulfate proteoglycans (HSPGs) and short heparin oligosaccharides. Whereas interactions with HSPGs act as platform to co-localise netrin-1 close to the cell surface, heparin oligosaccharides have a significant impact on the highly dynamic behaviour of netrin-1.
View Article and Find Full Text PDFGuanine quadruplexes (G4s) are four-stranded secondary structures of nucleic acids which are stabilized by noncanonical hydrogen bonding systems between the nitrogenous bases as well as extensive base stacking, or pi-pi, interactions. Formation of these structures in either genomic DNA or cellular RNA has the potential to affect cell biology in many facets including telomere maintenance, transcription, alternate splicing, and translation. Consequently, G4s have become therapeutic targets and several small molecule compounds have been developed which can bind such structures, yet little is known about how G4s interact with their native protein binding partners.
View Article and Find Full Text PDFA critical unmet need for the study of obesity-linked cancer is the lack of preclinical models that spontaneously develop obesity and cancer sequentially. Prohibitin (PHB) is a pleiotropic protein that has a role in adipose and immune functions. We capitalized on this attribute of PHB to develop a mouse model for obesity-linked tumor.
View Article and Find Full Text PDFMethods Mol Biol
October 2015
Mitochondria play vital roles in the maintenance of cellular homeostasis. They are a storehouse of cellular energy and antioxidative enzymes. Because of its immense role and function in the development of an organism, this organelle is required for the survival.
View Article and Find Full Text PDFAdipocytes are the primary cells in the body that store excess energy as triglycerides. To perform this specialized function, adipocytes rely on their mitochondria; however, the role of adipocyte mitochondria in the regulation of adipose tissue homeostasis and its impact on metabolic regulation is not understood. We developed a transgenic mouse model, Mito-Ob, overexpressing prohibitin (PHB) in adipocytes.
View Article and Find Full Text PDFThe posttranslational modification (PTM) in protein occurs in a regiospecific manner. In addition, the most commonly occurring PTMs involve similar residues in proteins such as acetylation, ubiquitylation, methylation and sumoylation at the lysine residue and phosphorylation and O-GlcNAc modification at serine/threonine residues. Thus, the possibility of modification sites where two such PTMs may occur in a mutually exclusive manner (ME-PTM) is much higher than known.
View Article and Find Full Text PDFMany viruses encode scaffolding and coat proteins that co-assemble to form procapsids, which are transient precursor structures leading to progeny virions. In bacteriophage P22, the association of scaffolding and coat proteins is mediated mainly by ionic interactions. The coat protein-binding domain of scaffolding protein is a helix turn helix structure near the C terminus with a high number of charged surface residues.
View Article and Find Full Text PDFMany prokaryotic and eukaryotic double-stranded DNA viruses use a scaffolding protein to assemble their capsid. Assembly of the double-stranded DNA bacteriophage P22 procapsids requires the interaction of 415 molecules of coat protein and 60-300 molecules of scaffolding protein. Although the 303-amino-acid scaffolding protein is essential for proper assembly of procapsids, little is known about its structure beyond an NMR structure of the extreme C-terminus, which is known to interact with coat protein.
View Article and Find Full Text PDF