This study aimed to guide future sensor studies against other pharmaceutical drugs by synthesizing FeONPs@MWCNT metallic nanoparticles (NPs). Side damage caused by excessive accumulation of tuberculosis drugs in the body can cause clots in the organs, and cause serious damage such as heart attack and respiratory failure, and threaten human life. Therefore, the development of sensors sensitive to various antibiotics in this study is important for human health.
View Article and Find Full Text PDFBrown HT and carmoisine, which are the most used dyestuffs in pharmaceuticals, textiles, cosmetics and foods, are important components of the Azo family. Although the Azo group is not toxic or carcinogenic under normal conditions, these dyestuffs require great care due to the reduction of the Azo functional group to amines. In particular, fast, reliable, easy, on-site and precise determinations of these substances are extremely necessary and important.
View Article and Find Full Text PDFAnalysis of protein content of food is necessary for quality control and is essential for precise labeling. Protein analysis is an issue of great economic and social fondness. Cereals are one of the most important sources of protein in food, livestock and poultry feed.
View Article and Find Full Text PDFIn the present research, a new biocompatible electrode is proposed as a rapid and direct glucose biosensing technique that improves on the deficiencies of fast clinical devices in laboratory investigations. Nano-ZnO (nanostructured zinc oxide) was sputtered by reactive direct current magnetron sputtering system on a precovered fluorinated tin oxide (FTO) conductive layer. Spin-coated polyvinyl alcohol (PVA) at optimized instrumental deposition conditions was applied to prepare the effective medium for glucose oxidase enzyme (GOx) covalent immobilization through cyanuric chloride (GOx/nano-ZnO/PVA/FTO).
View Article and Find Full Text PDFThis research aims at elaborating on the construction of a novel nanostructured copper oxide (Nano-CuO) sputtered thin film on the conductive fluorinated-tin oxide (FTO) layer that was exploited to immobilize glucose oxidase (GOx) enzyme via chitosan for developing impedimetric glucose biosensing. The distinct Nano-CuO thin film was fabricated by reactive DC magnetron sputtering system at the optimized instrumental deposition conditions. The FTO/Nano-CuO/Chitosan/GOx biosensor containing several layers afforded excellent microenvironment for rapid biocatalytic reaction to glucose.
View Article and Find Full Text PDF