Publications by authors named "Paco Romero"

The LED Blue Light (LBL) (450 nm) effect on hormones levels and on jasmonates (JAs) metabolism in oranges was investigated. The quantum flux (2 days, 60 μmol m. s) was chosen for its efficacy in reducing postharvest rot caused by this crop's main postharvest phytopathogenic fungus (Penicillium digitatum).

View Article and Find Full Text PDF

Fruit nutritional value, plant growth, and yield can be compromised by deficient copper (Cu) bioavailability, which often appears in arable lands. This condition causes low Cu content and modifications in the ripening-associated processes in tomato fruit. This research studies the transcriptomic changes that occur in red ripe tomato fruit grown under suboptimal Cu conditions to shed light on the molecular mechanisms underlying this stress.

View Article and Find Full Text PDF

Copper (Cu) is an essential micronutrient for plants because it functions as a redox-active cofactor in vital processes inside the cells. Arable lands are often deficient in micronutrient contents and require the application of enriched fertilisers, whose overuse poses a high risk for human health, the environment and the food safety. Here, we aimed to decipher the effects of Cu deficiency during fruit growth on Cu and other micronutrients contents and on the fruit nutritional value and quality of tomato, the most consumed fruit worldwide, throughout the maturation process.

View Article and Find Full Text PDF

Copper (Cu) plays a key role as cofactor in the plant proteins participating in essential cellular processes, such as electron transport and free radical scavenging. Despite high-affinity Cu transporters (COPTs) being key participants in Cu homeostasis maintenance, very little is known about COPTs in tomato (Solanum lycopersicum) even though it is the most consumed fruit worldwide and this crop is susceptible to suboptimal Cu conditions. In this study, a six-member family of COPT (SlCOPT1-6) was identified and characterized.

View Article and Find Full Text PDF

Epicuticular waxes are important natural compounds that influence cuticle properties and can protect fruit from factors that harm its external quality. We demonstrated that, at a dose that reduces postharvest citrus fruit quality loss (4 d 2 µL L), ethylene redirected epicuticular wax metabolism towards the synthesis of primary alcohols, mostly behenyl alcohol, by favouring the acyl-reduction pathway. This treatment also reduced the synthesis of terpenoids by redirecting the mevalonate pathway towards farnesol accumulation to the detriment of the accumulation of most triterpenoids, but not of their precursor squalene.

View Article and Find Full Text PDF

The phytohormone abscisic acid (ABA) is a major regulator of fruit response to water stress, and may influence cuticle properties and wax layer composition during fruit ripening. This study investigates the effects of ABA on epicuticular wax metabolism regulation in a citrus fruit cultivar with low ABA levels, called Pinalate ( L. Osbeck), and how this relationship is influenced by water stress after detachment.

View Article and Find Full Text PDF

is the main postharvest pathogen of citrus fruit. Although the inner fruit peel part (albedo) is less resistant than the outer part (flavedo) to , the global mechanisms involved in their different susceptibility remain unknown. Here, we examine transcriptome differences between both tissues at fruit harvest and in their early responses to infection.

View Article and Find Full Text PDF

Water stress is the most important environmental agent that contributes to the crop productivity and quality losses globally. In citrus, water stress is the main driver of the fruit peel disorders that impact the quality and market ability. An increasingly present post-harvest peel disorder is non-chilling peel pitting (NCPP).

View Article and Find Full Text PDF

Relative humidity (RH) during conservation and the chemical composition of epicuticular wax layer are factors that determine fruit quality and weight loss. This study investigates the influence of RH on the epicuticular wax metabolism during citrus fruit storage, and how it is affected by abscisic acid (ABA). Low RH conditions increased alcohols and fatty acids abundance, mainly due to accumulation of docosanol and lignoceric and cerotic acids.

View Article and Find Full Text PDF

Citrus fruit ripening is coupled with the synthesis and deposition of epicuticular waxes, which reduces water loss during fruit postharvest storage. Although abscisic acid (ABA) is a major regulator of citrus fruit ripening, whether ABA mediates epicuticular wax formation during this process remains poorly understood. We investigated the implication of ABA in cuticle properties and epicuticular wax metabolism, composition, and morphology by comparing the Navelate orange [ (L.

View Article and Find Full Text PDF

The biochemical changes induced by LED Blue Light (LBL) (450 nm) in Lane Late oranges were investigated. The selected quantum flux (60 µmol m s, 2 days) was associated with resistance against Penicillium digitatum, the main postharvest pathogen of citrus fruit. A holistic overview was obtained by a comparative transcriptome profile analysis, which revealed that LBL favored energy metabolism and redirected metabolic pathways toward the synthesis of diverse primary and secondary metabolism products.

View Article and Find Full Text PDF

Harvested fruit undergo carbon and energy deprivation. However, the events underlying this energy-related stress in detached fruit and their involvement in cell damage have not yet been elucidated. We showed that supplementing detached sweet oranges with additional carbon or energy sources reduced peel damage, while inhibitors of energy metabolism increased it.

View Article and Find Full Text PDF

Citrus fruit ripening is a complex process involving biochemical, physiological and molecular events that differ between the flesh and the peel of the fruit. We characterized sweet orange peel maturation by means of a comparative transcriptomic analysis between Navelate orange (Citrus sinensis L. Osbeck) and its mutant fruit Pinalate, which presents a severe blockage at early steps of the carotenoid biosynthetic pathway and consequently reduced ABA levels.

View Article and Find Full Text PDF

While fleshy fruit softening has long been mechanistically linked to cell wall disassembly, the importance of the fruit cuticle in water relations and firmness has been suggested through studies of the long-shelf life delayed fruit deterioration (dfd) tomato genotype. We tested the hypothesis that dynamic cuticle properties and composition affect tomato fruit transpiration and firmness and are influenced by environmental water availability, using dfd and two normally softening fruit cultivars, Ailsa Craig (AC) and M82, grown under control and water stress (WS) conditions. The effect of WS was also assessed following fruit detachment.

View Article and Find Full Text PDF

Copper (Cu) deficiency affects iron (Fe) homeostasis in several plant processes, including the increased Fe requirements due to cuproprotein substitutions for the corresponding Fe counterpart. Loss-of-function mutants from Arabidopsis thaliana high affinity copper transporter COPT5 and Fe transporters NATURAL RESISTANCE-ASSOCIATED MACROPHAGE PROTEIN 3/4 (NRAMP3 and NRAMP4) were used to study the interaction between metals internal pools. A physiological characterisation showed that the copt5 mutant is sensitive to Fe deficiency, and that nramp3nramp4 mutant growth was severely affected under limiting Cu.

View Article and Find Full Text PDF

The expansion of aerial organs in plants is coupled with the synthesis and deposition of a hydrophobic cuticle, composed of cutin and waxes, which is critically important in limiting water loss. While the abiotic stress-related hormone abscisic acid (ABA) is known to up-regulate wax accumulation in response to drought, the hormonal regulation of cuticle biosynthesis during organ ontogeny is poorly understood. To address the hypothesis that ABA also mediates cuticle formation during organ development, we assessed the effect of ABA deficiency on cuticle formation in three ABA biosynthesis-impaired tomato mutants.

View Article and Find Full Text PDF

ABA is involved in plant responses to non-optimal environmental conditions, including nutrient availability. Since copper (Cu) is a very important micronutrient, unraveling how ABA affects Cu uptake and distribution is relevant to ensure adequate Cu nutrition in plants subjected to stress conditions. Inversely, knowledge about how the plant nutritional status can interfere with ABA biosynthesis and signaling mechanisms is necessary to optimize stress tolerance in horticultural crops.

View Article and Find Full Text PDF

The ethylene perception inhibitor 1-methylcyclopropene (1-MCP) has been critical in understanding the hormone's mode of action. However, 1-MCP may trigger other processes that could vary the interpretation of results related until now to ethylene, which we aim to understand by using transcriptomic analysis. Transcriptomic changes in ethylene and 1-MCP-treated 'Navelate' (Citrus sinensis L.

View Article and Find Full Text PDF

To cope with the dual nature of copper as being essential and toxic for cells, plants temporarily adapt the expression of copper homeostasis components to assure its delivery to cuproproteins while avoiding the interference of potential oxidative damage derived from both copper uptake and photosynthetic reactions during light hours. The circadian clock participates in the temporal organization of coordination of plant nutrition adapting metabolic responses to the daily oscillations. This timely control improves plant fitness and reproduction and holds biotechnological potential to drive increased crop yields.

View Article and Find Full Text PDF

Histone acetylation affects several aspects of gene regulation, from chromatin remodelling to gene expression, by modulating the interplay between chromatin and key transcriptional regulators. The exact molecular mechanism underlying acetylation patterns and crosstalk with other epigenetic modifications requires further investigation. In budding yeast, these epigenetic markers are produced partly by histone acetyltransferase enzymes, which act as multi-protein complexes.

View Article and Find Full Text PDF

The effect of water stress on the interplay between phospholipases (PL) A2 and D and ABA signalling was investigated in fruit and leaves from the sweet orange Navelate and its fruit-specific ABA-deficient mutant Pinalate by studying simultaneously expression of 5 PLD and 3 PLA2-encoding genes. In general, expression levels of PLD-encoding genes were higher at harvest in the flavedo (coloured outer part of the peel) from Pinalate. Moreover, a higher and transient increase in expression of CsPLDα, CsPLDβ, CsPLDδ and CsPLDζ was observed in the mutant as compared to Navelate fruit under water stress, which may reflect a mechanism of acclimation to water stress influenced by ABA deficiency.

View Article and Find Full Text PDF

The interplay between abscisic acid (ABA) and phospholipases A2 and D (PLA2 and PLD) in the response of citrus fruit to water stress was investigated during postharvest by using an ABA-deficient mutant from 'Navelate' orange named 'Pinalate'. Fruit from both varieties harvested at two different maturation stages (mature-green and full-mature) were subjected to prolonged water loss inducing stem-end rind breakdown (SERB) in full-mature fruit. Treatment with PLA2 inhibitor aristolochic acid (AT) and PLD inhibitor lysophosphatidylethanolamine (LPE) reduced the disorder in both varieties, suggesting that phospholipid metabolism is involved in citrus peel quality.

View Article and Find Full Text PDF

The abscisic acid (ABA) signalling core in plants include the cytosolic ABA receptors (PYR/PYL/RCARs), the clade-A type 2C protein phosphatases (PP2CAs), and the subclass III SNF1-related protein kinases 2 (SnRK2s). The aim of this work was to identify these ABA perception system components in sweet orange and to determine the influence of endogenous ABA on their transcriptional regulation during fruit development and ripening, taking advantage of the comparative analysis between a wild-type and a fruit-specific ABA-deficient mutant. Transcriptional changes in the ABA signalosome during leaf dehydration were also studied.

View Article and Find Full Text PDF

Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L.

View Article and Find Full Text PDF