Publications by authors named "Pack Andreas"

The Moon formed 4.5 Ga ago through a collision between proto-Earth and a planetesimal known as Theia. The compositional similarity of Earth and Moon puts tight limits on the isotopic contrast between Theia and proto-Earth, or it requires intense homogenization of Theia and proto-Earth material during and in the aftermath of the Moon-forming impact, or a combination of both.

View Article and Find Full Text PDF

The isotopic compositions of samples returned from Cb-type asteroid Ryugu and Ivuna-type (CI) chondrites are distinct from other carbonaceous chondrites, which has led to the suggestion that Ryugu/CI chondrites formed in a different region of the accretion disk, possibly around the orbits of Uranus and Neptune. We show that, like for Fe, Ryugu and CI chondrites also have indistinguishable Ni isotope anomalies, which differ from those of other carbonaceous chondrites. We propose that this unique Fe and Ni isotopic composition reflects different accretion efficiencies of small FeNi metal grains among the carbonaceous chondrite parent bodies.

View Article and Find Full Text PDF

Northern glacial refugia are a hotly debated concept. The idea that many temperate organisms survived the Last Glacial Maximum (LGM; ~26.5 to 19 thousand years) in several sites across central and northern Europe stems from phylogeographic analyses, yet direct fossil evidence has thus far been missing.

View Article and Find Full Text PDF

Characterization of the elemental distribution of samples with rough surfaces has been strongly desired for the analysis of various natural and artificial materials. Particularly for pristine and rare analytes with micrometer sizes embedded on specimen surfaces, non-invasive and matrix effect-free analysis is required without surface polishing treatment. To satisfy these requirements, we proposed a new method employing the sequential combination of two imaging modalities, i.

View Article and Find Full Text PDF

Studies of material returned from Cb asteroid Ryugu have revealed considerable mineralogical and chemical heterogeneity, stemming primarily from brecciation and aqueous alteration. Isotopic anomalies could have also been affected by delivery of exogenous clasts and aqueous mobilization of soluble elements. Here, we show that isotopic anomalies for mildly soluble Cr are highly variable in Ryugu and CI chondrites, whereas those of Ti are relatively uniform.

View Article and Find Full Text PDF

The short-lived radionuclide aluminium-26 (Al) isotope is a major heat source for early planetary melting. The aluminium-26 - magnesium-26 (Al-Mg) decay system also serves as a high-resolution relative chronometer. In both cases, however, it is critical to establish whether Al was homogeneously or heterogeneously distributed throughout the solar nebula.

View Article and Find Full Text PDF

Preliminary analyses of asteroid Ryugu samples show kinship to aqueously altered CI (Ivuna-type) chondrites, suggesting similar origins. We report identification of C-rich, particularly primitive clasts in Ryugu samples that contain preserved presolar silicate grains and exceptional abundances of presolar SiC and isotopically anomalous organic matter. The high presolar silicate abundance (104 ppm) indicates that the clast escaped extensive alteration.

View Article and Find Full Text PDF

The extraterrestrial materials returned from asteroid (162173) Ryugu consist predominantly of low-temperature aqueously formed secondary minerals and are chemically and mineralogically similar to CI (Ivuna-type) carbonaceous chondrites. Here, we show that high-temperature anhydrous primary minerals in Ryugu and CI chondrites exhibit a bimodal distribution of oxygen isotopic compositions: O-rich (associated with refractory inclusions) and O-poor (associated with chondrules). Both the O-rich and O-poor minerals probably formed in the inner solar protoplanetary disk and were subsequently transported outward.

View Article and Find Full Text PDF

Little is known about the origin of the spectral diversity of asteroids and what it says about conditions in the protoplanetary disk. Here, we show that samples returned from Cb-type asteroid Ryugu have Fe isotopic anomalies indistinguishable from Ivuna-type (CI) chondrites, which are distinct from all other carbonaceous chondrites. Iron isotopes, therefore, demonstrate that Ryugu and CI chondrites formed in a reservoir that was different from the source regions of other carbonaceous asteroids.

View Article and Find Full Text PDF

Carbonaceous meteorites are thought to be fragments of C-type (carbonaceous) asteroids. Samples of the C-type asteroid (162173) Ryugu were retrieved by the Hayabusa2 spacecraft. We measured the mineralogy and bulk chemical and isotopic compositions of Ryugu samples.

View Article and Find Full Text PDF

The Perseverance rover is meant to collect samples of the martian surface for eventual return to Earth. The headspace gas present over the solid samples within the sample tubes will be of significant scientific interest for what it reveals about the interactions of the solid samples with the trapped atmosphere and for what it will reveal about the martian atmosphere itself. However, establishing the composition of the martian atmosphere will require other dedicated samples.

View Article and Find Full Text PDF

Mantles of rocky planets are dominantly composed of olivine and its high-pressure polymorphs, according to seismic data of Earth's interior, the mineralogy of natural samples, and modelling results. The missing mantle problem represents the paucity of olivine-rich material among meteorite samples and remote observation of asteroids, given how common differentiated planetesimals were in the early Solar System. Here we report the discovery of new olivine-rich meteorites that have asteroidal origins and are related to V-type asteroids or vestoids.

View Article and Find Full Text PDF

The low O/O stable isotope ratios (δO) of ancient chemical sediments imply ∼70 °C Archean oceans if the oxygen isotopic composition of seawater (sw) was similar to modern values. Models suggesting lower δO of Archean seawater due to intense continental weathering and/or low degrees of hydrothermal alteration are inconsistent with the triple oxygen isotope composition (Δ'O) of Precambrian cherts. We show that high CO sequestration fluxes into the oceanic crust, associated with extensive silicification, lowered the δO of seawater on the early Earth without affecting the Δ'O.

View Article and Find Full Text PDF

It is widely hypothesised that primeval life utilised small organic molecules as sources of carbon and energy. However, the presence of such primordial ingredients in early Earth habitats has not yet been demonstrated. Here we report the existence of indigenous organic molecules and gases in primary fluid inclusions in c.

View Article and Find Full Text PDF

Here we explore the carbon and oxygen isotope compositions of the co-existing carbonate and phosphate fractions of fish tooth enameloid as a tool to reconstruct past aquatic fish environments and harvesting grounds. The enameloid oxygen isotope compositions of the phosphate fraction (δ18OPO4) vary by as much as ~4‰ for migratory marine fish such as gilthead seabream (Sparus aurata), predominantly reflecting the different saline habitats it occupies during its life cycle. The offset in enameloid Δ18OCO3-PO4 values of modern marine Sparidae and freshwater Cyprinidae from the Southeast Mediterranean region vary between 8.

View Article and Find Full Text PDF

Rationale: Determination of δ O values directly from CO with traditional gas source isotope ratio mass spectrometry is not possible due to isobaric interference of C O O on C O O. The methods developed so far use either chemical conversion or isotope equilibration to determine the δ O value of CO . In addition, δ C measurements require correction for the interference from C O O on C O O since it is not possible to resolve the two isotopologues.

View Article and Find Full Text PDF

Past fish provenance, exploitation and trade patterns were studied by analyzing phosphate oxygen isotope compositions (δO) of gilthead seabream (Sparus aurata) tooth enameloid from archaeological sites across the southern Levant, spanning the entire Holocene. We report the earliest evidence for extensive fish exploitation from the hypersaline Bardawil lagoon on Egypt's northern Sinai coast, as indicated by distinctively high δO values, which became abundant in the southern Levant, both along the coast and further inland, at least from the Late Bronze Age (3,550-3,200 BP). A period of global, postglacial sea-level stabilization triggered the formation of the Bardawil lagoon, which was intensively exploited and supported a widespread fish trade.

View Article and Find Full Text PDF

Chemical fingerprints of impacts are usually compromised by extreme conditions in the impact plume, and the contribution of projectile matter to impactites does not often exceed a fraction of per cent. Here we use chromium and oxygen isotopes to identify the impactor and impact-plume processes for Zhamanshin astrobleme, Kazakhstan. εCr values up to 1.

View Article and Find Full Text PDF

Molten I-type cosmic spherules formed by heating, oxidation and melting of extraterrestrial Fe,Ni metal alloys. The entire oxygen in these spherules sources from the atmosphere. Therefore, I-type cosmic spherules are suitable tracers for the isotopic composition of the upper atmosphere at altitudes between 80 and 115 km.

View Article and Find Full Text PDF

The Paleocene-Eocene Thermal Maximum (PETM) is a remarkable climatic and environmental event that occurred 56 Ma ago and has importance for understanding possible future climate change. The Paleocene-Eocene transition is marked by a rapid temperature rise contemporaneous with a large negative carbon isotope excursion (CIE). Both the temperature and the isotopic excursion are well-documented by terrestrial and marine proxies.

View Article and Find Full Text PDF

The oxygen isotopic composition of hydrothermally altered rocks partly originates from the interacting fluid. We use the triple oxygen isotope composition ((17)O/(16)O, (18)O/(16)O) of Proterozoic rocks to reconstruct the (18)O/(16)O ratio of ancient meteoric waters. Some of these waters have originated from snowball Earth glaciers and thus give insight into the climate and hydrology of these critical intervals in Earth history.

View Article and Find Full Text PDF

Volcanism is a substantial process during crustal growth on planetary bodies and well documented to have occurred in the early Solar System from the recognition of numerous basaltic meteorites. Considering the ureilite parent body (UPB), the compositions of magmas that formed a potential UPB crust and were complementary to the ultramafic ureilite mantle rocks are poorly constrained. Among the Almahata Sitta meteorites, a unique trachyandesite lava (with an oxygen isotope composition identical to that of common ureilites) documents the presence of volatile- and SiO2-rich magmas on the UPB.

View Article and Find Full Text PDF