Publications by authors named "Paciaroni A"

The ability of fungi and bacteria to form biofilms on surfaces poses a serious threat to health and a problem in industrial settings. In this work, we investigated how the surface stiffness of silk fibroin (SF) films is modulated by the interaction with black phosphorus (BP) flakes, quantifying the morphogenesis of cells. Raman and infrared (IR) spectroscopies, along with scanning transmission electron microscopy, allowed us to quantify the thickness and diameter of BP flakes dispersed in the SF matrix (, 5.

View Article and Find Full Text PDF

Telomeric G-quadruplexes (G4s) are non-canonical DNA structures composed of TTAGGG repeats. They are extensively studied both as biomolecules key for genome stability and as promising building blocks and functional elements in synthetic biology and nanotechnology. This is why it is extremely important to understand how the interaction between G4s is affected by their topology.

View Article and Find Full Text PDF

3D printing of water stable proteins with elastic properties offers a broad range of applications including self-powered biomedical devices driven by piezoelectric biomaterials. Here, we present a study on water-soluble silk fibroin (SF) films. These films were prepared by mixing degummed silk fibers and calcium chloride (CaCl) in formic acid, resulting in a silk I-like conformation, which was then converted into silk II by redissolving in phosphate buffer (PBS).

View Article and Find Full Text PDF

Human telomeres (HTs) can form DNA G-quadruplex (G4), an attractive target for anticancer and antiviral drugs. HT-G4s exhibit inherent structural polymorphism, posing challenges for understanding their specific recognition by ligands. Here, we aim to explore the impact of different topologies within a small segment of the HT (Tel22) on its interaction with BRACO19, a rationally designed G4 ligand with high quadruplex affinity, already employed in in-vivo treatments.

View Article and Find Full Text PDF

Protein dynamics display distinct traits that are linked to their specific biological function. However, the interplay between intrinsic dynamics and the molecular environment on protein stability remains poorly understood. In this study, we investigate, by incoherent neutron scattering, the subnanosecond time scale dynamics of three model proteins: the mesophilic lysozyme, the thermophilic thermolysin, and the intrinsically disordered β-casein.

View Article and Find Full Text PDF

Molecular mechanisms underlying the thermal response of cells remain elusive. On the basis of the recent result that the short-time diffusive dynamics of the proteome is an excellent indicator of temperature-dependent bacterial metabolism and death, we used neutron scattering (NS) spectroscopy and molecular dynamics (MD) simulations to investigate the sub-nanosecond proteome mobility in psychro-, meso-, and hyperthermophilic bacteria over a wide temperature range. The magnitude of thermal fluctuations, measured by atomic mean square displacements, is similar among all studied bacteria at their respective thermal cell death.

View Article and Find Full Text PDF

Understanding how proteins work requires a thorough understanding of their internal dynamics. Proteins support a wide range of motions, from the femtoseconds to seconds time scale, relevant to crucial biological functions. In this context, the term "protein collective dynamics" refers to the complex patterns of coordinated motions of numerous atoms throughout the protein in the sub-picosecond time scale (terahertz frequency region).

View Article and Find Full Text PDF

In this study, we dissolved degummed silk [i.e., silk fibroin (SF)] and salmon sperm deoxyribonucleic acid (DNA) in water and used a bioinspired spinning process to obtain an electrospun nanofibrous SF-based patch (ESF).

View Article and Find Full Text PDF

Non-structural protein 5 (Nsp5) is a cysteine protease that plays a key role in SARS-CoV-2 replication, suppressing host protein synthesis and promoting immune evasion. The investigation of natural products as a potential strategy for Nsp5 inhibition is gaining attention as a means of developing antiviral agents. In this work, we have investigated the physicochemical properties and structure-activity relationships of ellagic acid and its gut metabolites, urolithins A-D, as ligands of Nsp5.

View Article and Find Full Text PDF

G-quadruplexes (G4s) are helical four-stranded structures forming from guanine-rich nucleic acid sequences, which are thought to play a role in cancer development and malignant transformation. Most current studies focus on G4 monomers, yet under suitable and biologically relevant conditions, G4s undergo multimerization. Here, we investigate the stacking interactions and structural features of telomeric G4 multimers by means of a novel low-resolution structural approach that combines small-angle X-ray scattering (SAXS) with extremely coarse-grained (ECG) simulations.

View Article and Find Full Text PDF

Guanine-rich DNA sequences can fold into non-canonical nucleic acid structures called G-quadruplexes (G4s). These nanostructures have strong implications in many fields, from medical science to bottom-up nanotechnologies. As a result, ligands interacting with G4s have attracted great attention as candidates in medical therapies, molecular probe applications, and biosensing.

View Article and Find Full Text PDF

In this study, we fabricated adhesive patches from silkworm-regenerated silk and DNA to safeguard human skin from the sun's rays. The patches are realized by exploiting the dissolution of silk fibers (e.g.

View Article and Find Full Text PDF

The main protease (Mpro or 3CLpro) is an enzyme that is evolutionarily conserved among different genera of coronaviruses. As it is essential for processing and maturing viral polyproteins, Mpro has been identified as a promising target for the development of broad-spectrum drugs against coronaviruses. Like SARS-CoV and MERS-CoV, the mature and active form of SARS-CoV-2 Mpro is a dimer composed of identical subunits, each with a single active site.

View Article and Find Full Text PDF

Telomeric G-quadruplexes (G4s) are promising targets in the design and development of anticancer drugs. Their actual topology depends on several factors, resulting in structural polymorphism. In this study, we investigate how the fast dynamics of the telomeric sequence AG3(TTAG3)3 (Tel22) depends on the conformation.

View Article and Find Full Text PDF

Temperature variations have a big impact on bacterial metabolism and death, yet an exhaustive molecular picture of these processes is still missing. For instance, whether thermal death is determined by the deterioration of the whole or a specific part of the proteome is hotly debated. Here, by monitoring the proteome dynamics of , we clearly show that only a minor fraction of the proteome unfolds at the cell death.

View Article and Find Full Text PDF

The emergence of ionotronic materials has been recently exploited for interfacing electronics and biological tissues, improving sensing with the surrounding environment. In this paper, we investigated the synergistic effect of regenerated silk fibroin (RS) with a plant-derived polyphenol (, chestnut tannin) on ionic conductivity and how water molecules play critical roles in regulating ion mobility in these materials. In particular, we observed that adding tannin to RS increases the ionic conductivity, and this phenomenon is accentuated by increasing the hydration.

View Article and Find Full Text PDF

G-quadruplexes (G4s) formed by the human telomeric sequence AG (TTAG) (Tel22) play a key role in cancer and aging. We combined elastic incoherent neutron scattering (EINS) and quasielastic incoherent neutron scattering (QENS) to characterize the internal dynamics of Tel22 G4s and to assess how it is affected by complexation with two standard ligands, Berberine and BRACO19. We show that the interaction with the two ligands induces an increase of the overall mobility of Tel22 as quantified by the mean squared displacements (MSD) of hydrogen atoms.

View Article and Find Full Text PDF

Introduction: The development of effective vaccines has partially mitigated the trend of the SARS-CoV-2 pandemic; however, the need for orally administered antiviral drugs persists. This study aims to investigate the activity of molnupiravir in combination with nirmatrelvir or GC376 on SARS-CoV-2 to verify the synergistic effect. Methods: The SARS-CoV-2 strains 20A.

View Article and Find Full Text PDF

B cell lymphoma 2 (BCL2) overexpression in a range of human tumors is often related to chemotherapy resistance and poor prognosis. GC-rich regions upstream of the P1 promoter in human BCL2 can form G-quadruplex (G4) structures through the stacking of four Hoogsteen-paired guanine bases. Stabilizing the G4 fold implies the inhibition of BCL2 expression and, thus, small molecules that selectively bind to the G4 are promising anticancer candidates.

View Article and Find Full Text PDF

G-quadruplexes (G4s) are noncanonical forms of DNA involved in many key genome functions. Here, we exploited UV Resonance Raman scattering to simultaneously explore the vibrational behavior of a human telomeric G4 (Tel22) and its aqueous solvent as the biomolecule underwent thermal melting. We found that the OH stretching band, related to the local hydrogen-bonded network of a water molecule, was in strict relation with the vibrational features of the G4 structure as a function of temperature.

View Article and Find Full Text PDF

Objective: Imaging represents an important noninvasive means to assess cystic fibrosis (CF) lung disease, which remains the main cause of morbidity and mortality in CF patients. While the development of new imaging techniques has revolutionised clinical practice, advances have posed diagnostic and monitoring challenges. The authors aim to summarise these challenges and make evidence-based recommendations regarding imaging assessment for both clinicians and radiologists.

View Article and Find Full Text PDF

Nucleic acid sequences rich in guanines can organize into noncanonical DNA G-quadruplexes (G4s) of variable size. The design of small molecules stabilizing the structure of G4s is a rapidly growing area for the development of novel anticancer therapeutic strategies and bottom-up nanotechnologies. Among a multitude of binders, porphyrins are very attractive due to their light activation that can make them valuable conformational regulators of G4s.

View Article and Find Full Text PDF

Macromolecular crowding influences protein mobility and stability . A precise description of the crowding effect on protein thermal stability requires the estimate of the combined effects of excluded volume, specific protein-environment interactions, as well as the thermal response of the crowders. Here, we explore an ideal model system, the lysozyme protein in powder state, to dissect the factors controlling the melting of the protein under extreme crowding.

View Article and Find Full Text PDF