Background: IgE-mediated cow's milk allergy (IgE-CMA) is one of the first allergies to arise in early childhood and may result from exposure to various milk allergens, of which β-lactoglobulin (BLG) and casein are the most important. Understanding the underlying mechanisms behind IgE-CMA is imperative for the discovery of novel biomarkers and the design of innovative treatment and prevention strategies.
Methods: We report a longitudinal in vivo murine model, in which two mice strains (BALB/c and C57Bl/6) were sensitized to BLG using either cholera toxin or an oil emulsion (n = 6 per group).
Mycotoxins are secondary metabolites produced by fungi such as Aspergillus, Alternaria, and Penicillium, affecting nearly 80% of global food crops. Tenuazonic acid (TeA) is the major mycotoxin produced by Alternaria alternata, a prevalent pathogen affecting plants, fruits, and vegetables. TeA is notably prevalent in European diets, however, TeA biomarkers of exposure and metabolites remain unknown.
View Article and Find Full Text PDF