Efficient musculoskeletal simulators and powerful learning algorithms provide computational tools to tackle the grand challenge of understanding biological motor control. Our winning solution for the inaugural NeurIPS MyoChallenge leverages an approach mirroring human skill learning. Using a novel curriculum learning approach, we trained a recurrent neural network to control a realistic model of the human hand with 39 muscles to rotate two Baoding balls in the palm of the hand.
View Article and Find Full Text PDFTo thrive in complex environments, animals and artificial agents must learn to act adaptively to maximize fitness and rewards. Such adaptive behavior can be learned through reinforcement learning, a class of algorithms that has been successful at training artificial agents and at characterizing the firing of dopamine neurons in the midbrain. In classical reinforcement learning, agents discount future rewards exponentially according to a single time scale, controlled by the discount factor.
View Article and Find Full Text PDFWhen people seek to understand concepts from an incomplete set of examples and counterexamples, there is usually an exponentially large number of classification rules that can correctly classify the observed data, depending on which features of the examples are used to construct these rules. A mechanistic approximation of human concept-learning should help to explain how humans prefer some rules over others when there are many that can be used to correctly classify the observed data. Here, we exploit the tools of propositional logic to develop an experimental framework that controls the minimal rules that are simultaneously consistent with the presented examples.
View Article and Find Full Text PDFRecent approaches to human concept learning have successfully combined the power of symbolic, infinitely productive rule systems and statistical learning to explain our ability to learn new concepts from just a few examples. The aim of most of these studies is to reveal the underlying language structuring these representations and providing a general substrate for thought. However, describing a model of thought that is fixed once trained is against the extensive literature that shows how experience shapes concept learning.
View Article and Find Full Text PDF