Publications by authors named "Pablo Panico"

Introduction: Insulin resistance in muscle can originate from a sedentary lifestyle, hypercaloric diets, or exposure to endocrine-disrupting pollutants such as arsenic. In skeletal muscle, insulin stimulates glucose uptake by translocating GLUT4 to the sarcolemma. This study aimed to evaluate the alterations induced by sucrose and arsenic exposure in vivo on the pathways involved in insulinstimulated GLUT4 translocation in the quadriceps and gastrocnemius muscles.

View Article and Find Full Text PDF

Nerve growth factor (NGF) was the first neurotrophin described. This neurotrophin contributes to organogenesis by promoting sensory innervation and angiogenesis in the endocrine and immune systems. Neuronal and non-neuronal cells produce and secrete NGF, and several cell types throughout the body express the high-affinity neurotrophin receptor TrkA and the low-affinity receptor p75NTR.

View Article and Find Full Text PDF

The coronavirus disease-2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is challenging global health and economic systems. In some individuals, COVID-19 can cause a wide array of symptoms, affecting several organs, such as the lungs, heart, bowels, kidneys and brain, causing multiorgan failure, sepsis and death. These effects are related in part to direct viral infection of these organs, immunological deregulation, a hypercoagulatory state and the potential for development of cytokine storm syndrome.

View Article and Find Full Text PDF

Exposure to arsenic in drinking water is a worldwide health problem. This pollutant is associated with increased risk of developing chronic diseases, including metabolic diseases. Metabolic syndrome (MS) is a complex pathology that results from the interaction between environmental and genetic factors.

View Article and Find Full Text PDF

Calpain-10 (CAPN10) belongs to the calpain superfamily. Genetic polymorphisms of the CAPN10 gene are associated with susceptibility to develop type 2 diabetes mellitus. Although the role of CAPN10 in the pathophysiology of diabetes has been extensively investigated, its biochemical properties are largely unknown.

View Article and Find Full Text PDF

Using a rabbit model, we investigated whether maternal intake of a high-fat and high-carbohydrate diet (HFCD) before and during pregnancy induces an increase in micronuclei frequency and oxidative stress in offspring during adulthood. Female rabbits received a standard diet (SD) or HFCD for two months before mating and during gestation. The offspring from both groups were nursed by foster mothers fed SD until postnatal day 35.

View Article and Find Full Text PDF

The calpain-10 (CAPN10) protease is implicated in the translocation of the glucose transporter 4 (GLUT4), which is retained in the Golgi matrix via the Tether containing a UBX domain for GLUT4 (TUG) protein. Insulin stimulation induces the proteolytic processing of TUG, which leads to the translocation of GLUT4 to the cell membrane. We tested whether TUG is a CAPN10 substrate.

View Article and Find Full Text PDF

Background And Aims: CAPN10 gene is associated with type 2 diabetes (T2D). Specific members of the calpain system (CAPN1, CAPN2 and CAPN10) are implicated in glucose metabolism. The aim of this study was to evaluate the calpain activity in leukocytes of control subjects and patients with T2D and its association with the calpain family members involved in glucose metabolism and with biochemical parameters that are altered in T2D.

View Article and Find Full Text PDF

Exposure to arsenic is associated with increased risk of developing insulin resistance and type 2 diabetes. The proteases calpain-1 (CAPN1), calpain-2 (CAPN2) and calpain-10 (CAPN10) and their endogenous inhibitor calpastatin (CAST) regulate glucose uptake in skeletal muscle and adipocytes. We investigated whether arsenic disrupts GLUT1 trafficking and function through calpain inhibition, using lymphocytes as a cell model.

View Article and Find Full Text PDF

The environmental obesogen model proposes that in addition to a high-calorie diet and diminished physical activity, other factors such as environmental pollutants and chemicals are involved in the development of obesity. Although arsenic has been recognized as a risk factor for Type 2 Diabetes with a specific mechanism, it is still uncertain whether arsenic is also an obesogen. The impairment of white adipose tissue (WAT) metabolism is crucial in the onset of obesity, and distinct studies have evaluated the effects of arsenic on it, however only in some of them for obesity-related purposes.

View Article and Find Full Text PDF

Calpain activity has been implicated in several cellular processes such as cell signaling, apoptosis, exocytosis, mitochondrial metabolism and cytoskeletal remodeling. Evidence has indicated that the impairment of calpain expression and the activity of different calpain family members are involved in diverse pathologies. Calpain-10 has been implicated in the development of type 2 diabetes, and polymorphisms in the CAPN10 gene have been associated with an increased risk of developing this disease.

View Article and Find Full Text PDF

Excessive weight gain and obesity are major public health concerns. Childhood obesity is growing at an alarming rate. Polymorphisms in the Calpain-10 gene and the reduced expression of this gene in muscle cells and adipocytes have been associated with an increased risk of type 2 diabetes mellitus in several populations.

View Article and Find Full Text PDF