Publications by authors named "Pablo Padilla-Longoria"

We usually accept that consciousness is in the brain. This statement corresponds to a Neurocentrist view. However, with all the physical and physiological data currently available, a convincing explanation of how consciousness emerges has not been given this topic is aborded by Anil Seth (2021).

View Article and Find Full Text PDF

The balance between pro- and anti-inflammatory immune system responses is crucial to preventing complex diseases like cancer. Macrophages are essential immune cells that contribute to this balance constrained by the local signaling profile of the tumor microenvironment. To understand how pro- and anti-inflammatory unbalance emerges in cancer, we developed a theoretical analysis of macrophage differentiation that is derived from activated monocytes circulating in the blood.

View Article and Find Full Text PDF

This paper studies the epigenetic process that leads to Angiosperms' flower architecture (flowering plants). As a case study, we analyze the flower Arabidopsis thaliana's GRN obtained during cell fate determination in the early stages of the flower's development, which was constructed in a previous work using experimental data. We start by constructing and analyzing the Epigenetic Forest, a discrete representation of Waddington's Epigenetic Landscape, obtained as the transition graph of the discrete dynamical system associated with the GRN.

View Article and Find Full Text PDF

We model the process of cell fate determination of the flower Arabidopsis-thaliana employing a system of reaction-diffusion equations governed by a potential field. This potential field mimics the flower's epigenetic landscape as defined by Waddington. It is derived from the underlying genetic regulatory network (GRN), which is based on detailed experimental data obtained during cell fate determination in the early stages of development of the flower.

View Article and Find Full Text PDF

Understanding the emergence of biological structures and their changes is a complex problem. On a biochemical level, it is based on gene regulatory networks (GRN) consisting on interactions between the genes responsible for cell differentiation and coupled in a greater scale with external factors. In this work we provide a systematic methodological framework to construct Waddington's epigenetic landscape of the GRN involved in cellular determination during the early stages of development of angiosperms.

View Article and Find Full Text PDF

In spite of being ubiquitous in life sciences, the concept of information is harshly criticized. Uses of the concept other than those derived from Shannon׳s theory are denounced as metaphoric. We perform a computational experiment to explore whether Shannon׳s information is adequate to describe the uses of said concept in commonplace scientific practice.

View Article and Find Full Text PDF

Mathematical models have been very useful in biological research. From the interaction of biology and mathematics, new problems have emerged that have generated advances in the theory, suggested further experimental work and motivated plausible conjectures. From our perspective, it is absolutely necessary to incorporate modeling tools in the study of circadian rhythms and that without a solid mathematical framework a real understanding of them will not be possible.

View Article and Find Full Text PDF

Cell plasticity or potency is necessary for the formation of multiple cell types. The mechanisms underlying this plasticity are largely unknown. Preimplantation mouse embryos undergo drastic changes in cellular potency, starting with the totipotent zygote through to the formation of the pluripotent inner cell mass (ICM) and differentiated trophectoderm in the blastocyst.

View Article and Find Full Text PDF

We propose a systematic methodology to construct a probabilistic epigenetic landscape of cell-fate attainment associated with N-node Boolean genetic regulatory networks. The general derivation proposed here is exemplified with an Arabidopsis thaliana network underlying floral organ determination grounded on qualitative experimental data.

View Article and Find Full Text PDF

In this article we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the inference of gene regulatory networks. Here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson, epistasis is defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus (herein, classical epistasis).

View Article and Find Full Text PDF

The ABC model postulates that expression combinations of three classes of genes (A, B and C) specify the four floral organs at early stages of flower development. This classic model provides a solid framework to study flower development and has been the foundation for multiple studies in different plant species, as well as for new evolutionary hypotheses. Nevertheless, it has been shown that in spite of being necessary, these three gene classes are not sufficient for flower organ specification.

View Article and Find Full Text PDF

Background: Dynamical models are instrumental for exploring the way information required to generate robust developmental patterns arises from complex interactions among genetic and non-genetic factors. We address this fundamental issue of developmental biology studying the leaf and root epidermis of Arabidopsis. We propose an experimentally-grounded model of gene regulatory networks (GRNs) that are coupled by protein diffusion and comprise a meta-GRN implemented on cellularised domains.

View Article and Find Full Text PDF

In contrast to the classical view of development as a preprogrammed and deterministic process, recent studies have demonstrated that stochastic perturbations of highly non-linear systems may underlie the emergence and stability of biological patterns. Herein, we address the question of whether noise contributes to the generation of the stereotypical temporal pattern in gene expression during flower development. We modeled the regulatory network of organ identity genes in the Arabidopsis thaliana flower as a stochastic system.

View Article and Find Full Text PDF

In Arabidopsis thaliana, leaf and root epidermis hairs exhibit contrasting spatial arrangements even though the genetic networks regulating their respective cell-fate determination have very similar structures and components. We integrated available experimental data for leaf and root hair patterning in dynamic network models which may be reduced to activator-inhibitor models. This integration yielded expected results for these kinds of dynamic models, including striped and dotted cell patterns which are characteristic of root and leaf epidermis, respectively.

View Article and Find Full Text PDF

Accumulated genetic data are stimulating the use of mathematical and computational tools for studying the concerted action of genes during cell differentiation and morphogenetic processes. At the same time, network theory has flourished, enabling analyses of complex systems that have multiple elements and interactions. Reverse engineering methods that use genomic data or detailed experiments on gene interactions have been used to propose gene network architectures.

View Article and Find Full Text PDF

Flowers are icons in developmental studies of complex structures. The vast majority of 250,000 angiosperm plant species have flowers with a conserved organ plan bearing sepals, petals, stamens, and carpels in the center. The combinatorial model for the activity of the so-called ABC homeotic floral genes has guided extensive experimental studies in Arabidopsis thaliana and many other plant species.

View Article and Find Full Text PDF