Publications by authors named "Pablo Morentin Gutierrez"

Article Synopsis
  • Targeting the estrogen receptor alpha (ERα) pathway is a proven strategy for treating estrogen receptor-positive (ER+) breast cancers, leading to the development of a new type of drug called a PROTAC designed to degrade ERα.
  • In laboratory tests, this PROTAC showed strong effectiveness in degrading ERα and blocking its activity in breast cancer cells, but results did not match when tested in live models.
  • The discrepancy is attributed to the PROTAC’s linker being metabolically unstable, which leads to the creation of competing metabolites that interfere with the drug's ability to degrade ERα; this emphasizes the importance of designing more stable PROTACs for better treatment outcomes.
View Article and Find Full Text PDF
Article Synopsis
  • Camizestrant, an oral selective estrogen receptor degrader (SERD), shows enhanced efficacy in treating estrogen receptor-positive (ER+) breast cancer compared to existing therapies, effectively targeting resistant cancer cells.
  • In preclinical studies, camizestrant demonstrated significant ER degradation and antiproliferative effects in various breast cancer models, including those resistant to current treatments like fulvestrant.
  • Combining camizestrant with CDK4/6 inhibitors and PI3K/AKT/mTOR-targeted therapies increased antitumor effectiveness, suggesting a powerful approach to overcoming endocrine resistance in breast cancer patients.
View Article and Find Full Text PDF

The value of an integrated mathematical modelling approach for protein degraders which combines the benefits of traditional turnover models and fully mechanistic models is presented. Firstly, we show how exact solutions of the mechanistic models of monovalent and bivalent degraders can provide insight on the role of each system parameter in driving the pharmacological response. We show how on/off binding rates and degradation rates are related to potency and maximal effect of monovalent degraders, and how such relationship can be used to suggest a compound optimization strategy.

View Article and Find Full Text PDF

Due to increased reliance on glycolysis, which produces lactate, monocarboxylate transporters (MCTs) are often upregulated in cancer. MCT4 is associated with the export of lactic acid from cancer cells under hypoxia, so inhibition of MCT4 may lead to cytotoxic levels of intracellular lactate. In addition, tumor-derived lactate is known to be immunosuppressive, so MCT4 inhibition may be of interest for immuno-oncology.

View Article and Find Full Text PDF

Suppressive myeloid cells mediate resistance to immune checkpoint blockade. PI3Kγ inhibition can target suppressive macrophages, and enhance efficacy of immune checkpoint inhibitors. However, how PI3Kγ inhibitors function in different tumor microenvironments (TME) to activate specific immune cells is underexplored.

View Article and Find Full Text PDF

We have developed a novel mechanistic pharmacokinetic-pharmacodynamic (PK/PD) model to describe the time course of plasma triglyceride (TAG) after Oral Lipid Tolerance Test (OLTT) and the effects of AZD7687, an inhibitor of diacylglycerol acyltransferase 1 (DGAT1), in humans, rats, and mice. Pharmacokinetic and plasma TAG data were obtained both in animals and in two phase I OLTT studies. In the PK/PD model, the introduction of exogenous TAG is represented by a first order process.

View Article and Find Full Text PDF

PI3K inhibitors with differential selectivity to distinct PI3K isoforms have been tested extensively in clinical trials, largely to target tumor epithelial cells. PI3K signaling also regulates the immune system and inhibition of PI3Kδ modulate the tumor immune microenvironment of pre-clinical mouse tumor models by relieving T-regs-mediated immunosuppression. PI3K inhibitors as a class and PI3Kδ specifically are associated with immune-related side effects.

View Article and Find Full Text PDF

Described is a quantitative-mass-spectrometry-imaging (qMSI) methodology for the analysis of lactate and glutamate distributions in order to delineate heterogeneity among mouse tumor models used to support drug-discovery efficacy testing. We evaluate and report on preanalysis-stabilization methods aimed at improving the reproducibility and efficiency of quantitative assessments of endogenous molecules in tissues. Stability experiments demonstrate that optimum stabilization protocols consist of frozen-tissue embedding, post-tissue-sectioning desiccation, and storage at -80 °C of tissue sections sealed in vacuum-tight containers.

View Article and Find Full Text PDF

GPR120 agonists have therapeutic potential for the treatment of diabetes, but few selective agonists have been reported. We identified an indazole-6-phenylcyclopropylcarboxylic acid series of GPR120 agonists and conducted SAR studies to optimize GPR120 potency. Furthermore, we identified a (S,S)-cyclopropylcarboxylic acid structural motif which gave selectivity against GPR40.

View Article and Find Full Text PDF
Article Synopsis
  • The PIK3CA gene, linked to many cancers, encodes the PI3Kα enzyme, making it a key target for drug development.
  • A novel inhibitor, AZD8835, shows strong effects against cancer cells with mutated PIK3CA, particularly in ER(+) breast cancer, and can effectively reduce tumor growth in models.
  • Intermittent high-dose scheduling of AZD8835 enhances its antitumor effects, especially when combined with other therapies that target related signaling pathways, suggesting a promising strategy for cancer treatment.
View Article and Find Full Text PDF

Given the complexity of pharmacological challenge experiments, it is perhaps not surprising that design and analysis, and in turn interpretation and communication of results from a quantitative point of view, is often suboptimal. Here we report an inventory of common designs sampled from anti-inflammatory, respiratory and metabolic disease drug discovery studies, all of which are based on animal models of disease involving pharmacological and/or patho/physiological interaction challenges. The corresponding data are modeled and analyzed quantitatively, the merits of the respective approach discussed and inferences made with respect to future design improvements.

View Article and Find Full Text PDF

11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) has been widely considered by the pharmaceutical industry as a target to treat metabolic syndrome in type II diabetics. We hypothesized that central nervous system (CNS) penetration might be required to see efficacy. Starting from a previously reported pyrimidine compound, we removed hydrogen-bond donors to yield 3, which had modest CNS penetration.

View Article and Find Full Text PDF

The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a target for novel type 2 diabetes and obesity therapies based on the premise that lowering of tissue glucocorticoids will have positive effects on body weight, glycemic control, and insulin sensitivity. An 11β-HSD1 inhibitor (compound C) inhibited liver 11β-HSD1 by >90% but led to only small improvements in metabolic parameters in high-fat diet (HFD)-fed male C57BL/6J mice. A 4-fold higher concentration produced similar enzyme inhibition but, in addition, reduced body weight (17%), food intake (28%), and glucose (22%).

View Article and Find Full Text PDF

[Acyl CoA]monoacylglycerol acyltransferase 2 (MGAT2) is of interest as a target for therapeutic treatment of diabetes, obesity and other diseases which together constitute the metabolic syndrome. In this Letter we report our discovery and optimisation of a novel series of MGAT2 inhibitors. The development of the SAR of the series and a detailed discussion around some key parameters monitored and addressed during the lead generation phase will be given.

View Article and Find Full Text PDF

11β-Hydroxysteroid dehydrogenase 1 (11β-HSD1) has been a target of intensive research efforts across the pharmaceutical industry, due to its potential for the treatment of type II diabetes and other elements of the metabolic syndrome. To demonstrate the value of 11β-HSD1 in preclinical models, we required inhibitors with good potency against both human and rodent isoforms. Herein, we describe our efforts to understand how to co-optimize human and murine potency within the (5-hydroxy-2-adamantyl)-pyrimidine-5-carboxamide series.

View Article and Find Full Text PDF

A new series of pyrazinecarboxamide DGAT1 inhibitors was designed to address the need for a candidate drug with good potency, selectivity, and physical and DMPK properties combined with a low predicted dose in man. Rational design and optimization of this series led to the discovery of compound 30 (AZD7687), which met the project objectives for potency, selectivity, in particular over ACAT1, solubility, and preclinical PK profiles. This compound showed the anticipated excellent pharmacokinetic properties in human volunteers.

View Article and Find Full Text PDF

Directed screening of nitrile compounds revealed 3 as a highly potent cathepsin K inhibitor but with cathepsin S activity and very poor stability to microsomes. Synthesis of compounds with reduced molecular complexity, such as 7, revealed key SAR and demonstrated that baseline physical properties and in vitro stability were in fact excellent for this series. The tricycle carboline P3 unit was discovered by hypothesis-based design using existing structural information.

View Article and Find Full Text PDF

A novel series of DGAT-1 inhibitors was discovered from an oxadiazole amide high throughput screening (HTS) hit. Optimisation of potency and ligand lipophilicity efficiency (LLE) resulted in a carboxylic acid containing clinical candidate 53 (AZD3988), which demonstrated excellent DGAT-1 potency (0.6 nM), good pharmacokinetics and pre-clinical in vivo efficacy that could be rationalised through a PK/PD relationship.

View Article and Find Full Text PDF

Plaques in the parenchyma of the brain containing Abeta peptides are one of the hallmarks of Alzheimer's disease. These Abeta peptides are produced by the final proteolytic cleavage of the amyloid precursor protein by the intramembraneous aspartyl protease gamma-secretase. Thus, one approach to lowering levels of Abeta has been via the inhibition of the gamma-secretase enzyme.

View Article and Find Full Text PDF

The protease gamma-secretase plays a pivotal role in the synthesis of pathogenic amyloid-beta in Alzheimer's disease (AD). Here, we report a further extension to a series of cyclohexyl sulfone-based gamma-secretase inhibitors which has allowed the preparation of highly potent compounds which also demonstrate robust Abeta(40) lowering in vivo (e.g.

View Article and Find Full Text PDF