The influence of surface morphology and the oxidation state on the electrocatalytic activity of nanostructured electrodes is well recognized, yet disentangling their individual roles in specific reactions remains challenging. Here, we investigated the electrooxidation of sulfite ions in an alkaline environment using cyclic voltammetry on copper oxide nanostructured electrodes with different oxidation states and morphologies but with similar active areas. To this aim, we synthesized nanostructured Cu films made of nanoparticles or nanorods on top of glassy carbon electrodes.
View Article and Find Full Text PDFTip-enhanced Raman spectroscopy (TERS) under ultrahigh vacuum and cryogenic conditions enables exploration of the relations between the adsorption geometry, electronic state, and vibrational fingerprints of individual molecules. TERS capability of reflecting spin states in open-shell molecular configurations is yet unexplored. Here, we use the tip of a scanning probe microscope to lift a perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecule from a metal surface to bring it into an open-shell spin one-half anionic state.
View Article and Find Full Text PDFMetabolic dysfunction-associated steatotic liver disease (MASLD) is a complex disorder whose prevalence is rapidly growing in South America. The disturbances in the microbiota-gut-liver axis impact the liver damaging processes toward fibrosis. Gut microbiota status is shaped by dietary and lifestyle factors, depending on geographic location.
View Article and Find Full Text PDFMost low-mass stars form in stellar clusters that also contain massive stars, which are sources of far-ultraviolet (FUV) radiation. Theoretical models predict that this FUV radiation produces photodissociation regions (PDRs) on the surfaces of protoplanetary disks around low-mass stars, which affects planet formation within the disks. We report James Webb Space Telescope and Atacama Large Millimeter Array observations of a FUV-irradiated protoplanetary disk in the Orion Nebula.
View Article and Find Full Text PDFCorrection for ' observation of the on-surface thermal dehydrogenation of -octane on Pt(111)' by Daniel Arribas , , 2023, https://doi.org/10.1039/d3nr02564k.
View Article and Find Full Text PDFThe catalytic dehydrogenation of alkanes constitutes a key step for the industrial conversion of these inert sp-bonded carbon chains into other valuable unsaturated chemicals. To this end, platinum-based materials are among the most widely used catalysts. In this work, we characterize the thermal dehydrogenation of -octane (-CH) on Pt(111) under ultra-high vacuum using synchrotron-radiation X-ray photoelectron spectroscopy, temperature-programmed desorption and scanning tunneling microscopy, combined with calculations.
View Article and Find Full Text PDFInterplay between motion of nuclei and excitations has an important role in molecular photophysics of natural and artificial structures. Here we provide a detailed analysis of coupling between quantized librational modes (librons) and charged excited states (trions) on single phthalocyanine dyes adsorbed on a surface. By means of tip-induced electroluminescence performed with a scanning probe microscope, we identify libronic signatures in spectra of chirally adsorbed phthalocyanines and find that these signatures are absent from spectra of symmetrically adsorbed species.
View Article and Find Full Text PDFFront Physiol
April 2022
Given the relevance of the effects that weight loss can generate on the physical performance in athletes, this study performed a systematic review with meta-analysis of the published literature on rapid weight loss (RWL) and examined its impact on the physical performance in Official Olympic combat sports athletes. The "Preferred Reporting Items for Systematic Reviews and Meta-Analysis" (PRISMA) guidelines were followed to ensure an ethical and complete reporting of the findings. PubMed, SPORT Discus, and EBSCO were the electronic databases explored for article retrieval and selection.
View Article and Find Full Text PDFThe use of physical vapor deposition methods in the fabrication of catalyst layers holds promise for enhancing the efficiency of future carbon capture and utilization processes such as the CO reduction reaction (CORR). Following that line of research, we report in this work the application of a sputter gas aggregation source (SGAS) and a multiple ion cluster source type apparatus, for the controlled synthesis of CuO nanoparticles (NPs) atop gas diffusion electrodes. By varying the mass loading, we achieve control over the balance between methanation and multicarbon formation in a gas-fed CO electrolyzer and obtain peak CH partial current densities of -143 mA cm (mass activity of 7.
View Article and Find Full Text PDFEntanglement of excitons holds great promise for the future of quantum computing, which would use individual molecular dyes as building blocks of their circuitry. Studying entangled excitonic eigenstates emerging in coupled molecular assemblies in the near-field with submolecular resolution has the potential to bring insight into the photophysics of these fascinating quantum phenomena. In contrast to far-field spectroscopies, near-field spectroscopic mapping permits direct identification of the individual eigenmodes, type of exciton coupling, including excited states otherwise inaccessible in the far field (dark states).
View Article and Find Full Text PDFDevelopment of sustainable processes for hydrocarbons synthesis is a fundamental challenge in chemistry since these are of unquestionable importance for the production of many essential synthetic chemicals, materials and carbon-based fuels. Current industrial processes rely on non-abundant metal catalysts, temperatures of hundreds of Celsius and pressures of tens of bars. We propose an alternative gas phase process under mild reaction conditions using only atomic carbon, molecular hydrogen and an inert carrier gas.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2021
The interest in the research of the structural and electronic properties between graphene and lithium has bloomed since it has been proven that the use of graphene as an anode material in lithium-ion batteries ameliorates their performance and stability. Here, we investigate an alternative route to intercalate lithium underneath epitaxially grown graphene on iridium by means of photon irradiation. We grow thin films of LiCl on top of graphene on Ir(111) and irradiate the system with soft X-ray photons, which leads to a cascade of physicochemical reactions.
View Article and Find Full Text PDFOptical spectromicroscopies, which can reach atomic resolution due to plasmonic enhancement, are perturbed by spontaneous intensity modifications. Here, we study such fluctuations in plasmonic electroluminescence at the single-atom limit profiting from the precision of a low-temperature scanning tunneling microscope. First, we investigate the influence of a controlled single-atom transfer from the tip to the sample on the plasmonic properties of the junction.
View Article and Find Full Text PDFConstant-amplitude bias modulation over a broad range of microwave frequencies is a prerequisite for application in high-resolution spectroscopic techniques in a tunneling junction as e.g. electron spin resonance spectroscopy or optically detected paramagnetic resonance.
View Article and Find Full Text PDFLight sources on the scale of single molecules can be addressed and characterized at their proper sub-nanometer scale by scanning tunneling microscopy-induced luminescence (STML). Such a source can be driven by defined short charge pulses while the luminescence is detected with sub-nanosecond resolution. We introduce an approach to concurrently image the molecular emitter, which is based on an individual defect, with its local environment along with its luminescence dynamics at a resolution of a billion frames per second.
View Article and Find Full Text PDFCharged optical excitations (trions) generated by charge carrier injection are crucial for emerging optoelectronic technologies as they can be produced and manipulated by electric fields. Trions and neutral excitons can be efficiently induced in single molecules by means of tip-enhanced spectromicroscopic techniques. However, little is known of the exciton-trion dynamics at single molecule level as this requires methods permitting simultaneous subnanometer and subnanosecond characterization.
View Article and Find Full Text PDFOn-surface synthesis is emerging as a highly rational bottom-up methodology for the synthesis of molecular structures that are unattainable or complex to obtain by wet chemistry. Here, oligomers of meta-polyaniline, a known ferromagnetic polymer, were synthesized from para-aminophenol building-blocks via an unexpected and highly specific on-surface formal 1,4 Michael-type addition at the meta position, driven by the reduction of the aminophenol molecule. We rationalize this dehydrogenation and coupling reaction mechanism with a combination of in situ scanning tunneling and non-contact atomic force microscopies, high-resolution synchrotron-based X-ray photoemission spectroscopy and first-principles calculations.
View Article and Find Full Text PDFThe ability to control the emission from single-molecule quantum emitters is an important step toward their implementation in optoelectronic technology. Phthalocyanine and derived metal complexes on thin insulating layers studied by scanning tunneling microscope-induced luminescence (STML) offer an excellent playground for tuning their excitonic and electronic states by Coulomb interaction and to showcase their high environmental sensitivity. Copper phthalocyanine (CuPc) has an open-shell electronic structure, and its lowest-energy exciton is a doublet, which brings interesting prospects in its application for optospintronic devices.
View Article and Find Full Text PDFLight absorption and emission have their origins in fast atomic-scale phenomena. To characterize these basic steps (..
View Article and Find Full Text PDFA hallmark of quantum control is the ability to manipulate quantum emission at the nanoscale. Through scanning tunneling microscopy-induced luminescence (STML), we are able to generate plasmonic light originating from inelastic tunneling processes that occur in the vacuum between a tip and a few-nanometer-thick molecular film of C deposited on Ag(111). Single photon emission, not of molecular excitonic origin, occurs with a 1/ recovery time of a tenth of a nanosecond or less, as shown through Hanbury Brown and Twiss photon intensity interferometry.
View Article and Find Full Text PDFEvolved stars are a foundry of chemical complexity, gas and dust that provides the building blocks of planets and life, and dust nucleation first occurs in their photosphere. Despite their importance, the circumstellar regions enveloping these stars remain hidden to many observations, thus dust formation processes are still poorly understood. Laboratory astrophysics provides complementary routes to unveil these chemical processes, but most experiments rely on combustion or plasma decomposition of molecular precursors under physical conditions far removed from those in space.
View Article and Find Full Text PDFWe investigate electroluminescence of single molecular emitters on NaCl on Ag(111) and Au(111) with submolecular resolution in a low-temperature scanning probe microscope with tunneling current, atomic force, and light detection capabilities. The role of the tip state is studied in the photon maps of a prototypical emitter, zinc phthalocyanine (ZnPc), using metal and CO-metal tips. CO-functionalization is found to have an impact on the resolution and contrast of the photon maps due to the localized overlap of the p-orbitals on the tip with the molecular orbitals of the emitter.
View Article and Find Full Text PDFPhoton statistics is a powerful tool for characterizing the emission dynamics of nanoscopic systems and their photophysics. Recent advances that combine correlation spectroscopy with scanning tunneling microscopy induced luminescence (STML) have allowed the measurement of the emission dynamics from individual molecules and defects, demonstrating their nature as single-photon emitters. The application of correlation spectroscopy to the analysis of the dynamics of a well-characterized adsorbate system in an ultrahigh vacuum remained to be demonstrated.
View Article and Find Full Text PDF