Publications by authors named "Pablo Lopez-Crespo"

Background: There are different ways to analyze energy absorbance (EA) in the human auditory system. In previous research, we developed a complete finite element model (FEM) of the human auditory system.

Objective: In this current work, the external auditory canal (EAC), middle ear, and inner ear (spiral cochlea, vestibule, and semi-circular canals) were modelled based on human temporal bone histological sections.

View Article and Find Full Text PDF

This research focuses on analysing the 18Ni300 maraging steel produced through laser powder bed fusion. Specifically, it aims to examine the phase components using X-ray diffraction, the microstructure through scanning electron microscopy, and the hardness of the different structures present in the manufactured material. The primary goal is to meticulously analyse the material and its microstructures.

View Article and Find Full Text PDF

The presence of defects in additive manufactured maraging steel is a widespread problem as its dependence on processing parameters significantly influences it. Using X-ray computed tomography, along with optical microscope data limited to 2D images, quantifies the internal porosity present on a compact tension sample typically employed in fatigue testing. The primary goal of this research is to analyse the pores obtained after the fabrication of a compact tension sample and their main definition parameters, such as sphericity, aspect ratio, surface, and volume, and obtain validation of which method is valid for each of the parameters analysed.

View Article and Find Full Text PDF

In order to improve understanding of the fatigue behaviour in additive manufactured samples, this research delves into the challenging interplay between building parameters, particularly fabrication angles, and the presence of pores. The primary objective is to explore the characterisation of these pores and unravel their relationship with the fatigue properties of the material under investigation. Through a systematic analysis of porosity distribution in various fabrication orientations, supplemented by a detailed examination of the elemental dispersion around specific porous structures using energy-dispersive X-ray spectroscopy, a consistent behavioural pattern emerges across the samples.

View Article and Find Full Text PDF

This paper presents an extensive literature review focusing on the utilisation of crack tip plasticity as a crucial parameter in determining and enhancing crack growth models. The review encompasses a comprehensive analysis of various methodologies, predominantly emphasising numerical simulations of crack growth models while also considering analytical approaches. Although experimental investigations are not the focus of this review, their relevance and interplay with numerical and analytical methods are acknowledged.

View Article and Find Full Text PDF

This work presents a new approach for studying crack growth resulting from fatigue, which utilizes the plastic contribution of crack-tip opening displacement (CTOD). CTOD is used to predict austenitic stainless-steel crack propagation. Unlike linear elastic fracture mechanics analysis, the method presented here is also helpful for tasks other than small-scale yielding.

View Article and Find Full Text PDF

In this work, the influence of the tool geometry on friction stir spot welding (FSSW) was studied on sheets made of AA6061-T6 aluminum alloy. Four different AISI H13 tools with simple cylindrical and conical pin profiles and 12 mm and 16 mm shoulder diameters were used to perform the FSSW joints. Sheets of 1.

View Article and Find Full Text PDF

Accurate knowledge of the plastic zone of fatigue cracks is a very direct and effective way to quantify the damage of components subjected to cyclic loads. In this work, we propose an ultra-fine experimental characterisation of the plastic zone based on Vickers micro-indentations. The methodology is applied to different compact tension (CT) specimens made of aluminium alloy 2024-T351 subjected to increasing stress intensity factors.

View Article and Find Full Text PDF