The development of three-dimensional tissue architecture requires precise control over the attachment of cells to the extracellular matrix (ECM). Integrins, the main ECM-binding receptors in animals, are regulated in multiple ways to modulate cell-ECM adhesion. One example is the conformational activation of integrins by extracellular signals ('outside-in activation') or by intracellular signals ('inside-out activation'), whereas another is the modulation of integrin turnover.
View Article and Find Full Text PDFCell adhesion to the extracellular matrix (ECM) allows cells to form and maintain three-dimensional tissue architecture. Cell-ECM adhesions are stabilized upon exposure to mechanical force. In this study, we used quantitative imaging and mathematical modeling to gain mechanistic insight into how integrin-based adhesions respond to increased and decreased mechanical forces.
View Article and Find Full Text PDFTalin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM.
View Article and Find Full Text PDF