Flow-diverter stents offer clinicians an effective solution for treating intracranial aneurysms, especially in cases where other devices may be unsuitable. However, strongly deviating success rates among different centres, manufacturers, and aneurysm phenotypes highlight the need for better in-situ studies of these devices. To support research in this area, virtual stenting algorithms have been proposed that, combined with computational fluid dynamics, provide insights into the hemodynamic alterations induced by the device.
View Article and Find Full Text PDFFront Bioeng Biotechnol
June 2024
Advances in computational fluid dynamics continuously extend the comprehension of aneurysm growth and rupture, intending to assist physicians in devising effective treatment strategies. While most studies have first modelled intracranial aneurysm walls as fully rigid with a focus on understanding blood flow characteristics, some researchers further introduced Fluid-Structure Interaction (FSI) and reported notable haemodynamic alterations for a few aneurysm cases when considering wall compliance. In this work, we explore further this research direction by studying 101 intracranial sidewall aneurysms, emphasizing the differences between rigid and deformable-wall simulations.
View Article and Find Full Text PDFBioengineering (Basel)
March 2024
Computational fluid dynamics is intensively used to deepen our understanding of aneurysm growth and rupture in an attempt to support physicians during therapy planning. Numerous studies assumed fully rigid vessel walls in their simulations, whose sole haemodynamics may fail to provide a satisfactory criterion for rupture risk assessment. Moreover, direct in vivo observations of intracranial aneurysm pulsation were recently reported, encouraging the development of fluid-structure interaction for their modelling and for new assessments.
View Article and Find Full Text PDF