Intervalley excitons with electron and hole wavefunctions residing in different valleys determine the long-range transport and dynamics observed in many semiconductors. However, these excitons with vanishing oscillator strength do not directly couple to light and, hence, remain largely unstudied. Here, we develop a simple nanomechanical technique to control the energy hierarchy of valleys via their contrasting response to mechanical strain.
View Article and Find Full Text PDFAlthough most patients with multiple myeloma respond to treatment initially, therapy resistance develops almost invariably, and only a subset of patients show durable responses to immunomodulatory therapies. Although the immune microenvironment has been extensively studied in patients with myeloma, its composition is currently not used as prognostic markers in clinical routine. We hypothesized that the outcome of immune signaling pathway engagement can be highly variable, depending on which 2 cellular populations participate in this interaction.
View Article and Find Full Text PDFMechanical strain is a powerful tuning knob for excitons, Coulomb-bound electron-hole complexes dominating optical properties of two-dimensional semiconductors. While the strain response of bright free excitons is broadly understood, the behaviour of dark free excitons (long-lived excitations that generally do not couple to light due to spin and momentum conservation) or localized excitons related to defects remains mostly unexplored. Here, we study the strain behaviour of these fragile many-body states on pristine suspended WSe kept at cryogenic temperatures.
View Article and Find Full Text PDF