Publications by authors named "Pablo Gonzalez-Herrero"

Unsymmetrical bis-cyclometalated dicarboxylato complexes (-6-32)-[Pt(tpy)(OCR)] [tpy = cyclometalated 2-(-tolyl)pyridine, R = -Bu (), Me (), Ph (), CF ()], are obtained from the reaction of -[Pt(tpy)] with the appropriate PhI(OCR) reagent. Treatment of complexes of this type with different carboxylates (R'CO) results in the formation of mixed-carboxylato derivatives, namely (-6-43)-[Pt(tpy)(OCMe)(OCR')] [R' = -Bu (), CF (), Ph ()], (-6-34)-[Pt(tpy)(OCCF)(OCR')] [R' = -Bu (), Me (), Ph ()], and (-6-34)-[Pt(tpy)(OC--Bu)(OCMe)] (). Irradiation of - and - with UV light (365 nm) in MeCN gives 5-methyl-2-(2-pyridyl)phenyl pivalate (), 5-methyl-2-(2-pyridyl)phenyl acetate () or 5-methyl-2-(2-pyridyl)phenyl benzoate () as the major photoproduct from most complexes, resulting from a reductive C-O coupling between a tpy ligand and a carboxylato ligand.

View Article and Find Full Text PDF

Dicationic, -symmetrical, tris-chelate Pt(IV) complexes of general formula [Pt(trz)(N∧N)](OTf), bearing two cyclometalated 4-butyl-3-methyl-1-phenyl-1-1,2,3-triazol-5-ylidene (trz) ligands and one aromatic diimine [N∧N = 2,2'-bipyridine (bpy, ), 4,4'-di--butyl-2,2'-bipyridine (dbbpy, ), 4,4'-dimethoxi-2,2'-bipyridine (dMeO-bpy, ), 1,10-phenanthroline (phen, ), 4,7-diphenyl-1,10-phenanthroline (bphen, ), dipyrido[3,2-:2',3'-]phenazine (dppz, ), or 2,3-diphenylpyrazino[2,3-][1,10]phenanthroline (dpprzphen, )] are obtained through chloride abstraction from [PtCl(trz)] () using AgOTf in the presence of the corresponding diimine. Complexes show long-lived phosphorescence from LC excited states involving the diimine ligand, with quantum yields that reach 0.18 in solution and 0.

View Article and Find Full Text PDF

The synthesis, structure, and luminescence of Pt(II) complexes of the type [Pt(N∧C∧C)(L)] are reported, where N∧C∧C is a terdentate ligand resulting from the cycloplatination of 2-(3,5-diphenoxyphenyl)pyridine or 2-(4,4″-dimethyl-[1,1':3',1″-terphenyl]-5'-yl)pyridine, and L represents a monodentate ancillary ligand, which can be γ-picoline, 4-pyridinecarboxaldehyde, PPh, butyl or 2,6-dimethylphenyl isocyanide, CO, or the N-heterocyclic carbenes 1-butyl-3-methylimidazol-2-ylidene or 4-butyl-3-methyl-1-phenyl-1-1,2,3-triazol-5-ylidene. Derivatives bearing CO, isocyanides, or carbenes showed the highest stabilities in solution, whereas the pyridine and PPh derivatives establish ligand-exchange equilibria in acetonitrile. Different supramolecular structures are observed in the solid state, which largely depend on the nature of the ancillary ligand.

View Article and Find Full Text PDF

Unsymmetrical dicarboxylato complexes [Pt(tpy)(OCR)] [tpy = cyclometalated 2-(-tolyl)pyridine, R = Me, CF] react with the terminal alkynes 4-methoxyphenylacetylene, phenylacetylene, 4-(trifluoromethyl)phenylacetylene or 3,5-difluorophenylacetylene in the presence of a base to produce complexes -[Pt(tpy)(OCR)(CCAr)], in which the metalated carbon atoms are in a meridional arrangement. Irradiation of the trifluoroacetato derivatives with a 365 nm LED source leads to isomerization to the facial complexes, which can be converted to chlorido derivatives upon reaction with NHCl. In contrast, irradiation of the acetato derivatives leads to four different processes, namely, reduction to -[Pt(tpy)], annulations involving one of the tpy ligands and the C and C atoms of the alkynyl to give benzoquinolizinium derivatives, isomerization to the facial geometry, or C-O couplings between the acetato ligand and one tpy.

View Article and Find Full Text PDF

Photochemical cycloplatinations of 2-arylpyridines and related C∧N ligands, as well as terdentate heteroaromatic N∧N∧C, N∧C∧N, and N∧C∧C compounds, are demonstrated using (BuN)[PtCl] or [PtCl(NCPh)] as precursors at room temperature. Mono- or bis-cyclometalated Pt(II) complexes with C∧N ligands are obtained depending on excitation wavelength and precursor. Monitoring experiments show that photoexcitation enables both the N-coordination and the subsequent C-H metalation.

View Article and Find Full Text PDF

The reactions leading to the formation of C-heteroatom bonds in the coordination sphere of Au(III) complexes are uncommon, and their mechanisms are not well known. This work reports on the synthesis and reductive elimination reactions of a series of Au(III) methyl complexes containing different Au-heteroatom bonds. Complexes [Au(CF)(Me)(X)(PR)] (R = Ph, X = OTf, OClO, ONO, OC(O)CF, F, Cl, Br; R = Cy, X = Me, OTf, Br) were obtained by the reaction of -[Au(CF)(Me)(PR)] (R = Ph, Cy) with HX.

View Article and Find Full Text PDF

The synthesis, structure, photophysical properties, and electrochemistry of the first series of Pt(IV) tris-chelates bearing cyclometalated aryl-NHC ligands are reported. The complexes have the general formula [Pt(trz)(C∧N)], combining two units of the cyclometalated, mesoionic aryl-NHC ligand 4-butyl-3-methyl-1-phenyl-1-1,2,3-triazol-5-ylidene (trz) with a cyclometalated 2-arylpyridine [C∧N = 2-(2,4-difluorophenyl)pyridine (dfppy), 2-phenylpyridine (ppy), 2-(-tolyl)pyridine (tpy), 2-(2-thienyl)pyridine (thpy), 2-(9,9-dimethylfluoren-2-yl)pyridine (flpy)], and presenting a arrangement or metalated aryls. They exhibit a significant photostability under UV irradiation and long-lived phosphorescence in the blue to yellow color range, arising from LC excited states involving the C∧N ligands, with quantum yields of up to 0.

View Article and Find Full Text PDF

The first series of neutral, tris-chelate, phosphorecent Pt(IV) complexes is reported, which combine two cyclometalated 2-arylpyridine ligands and a dimetalated biaryl. The introduction of biaryl ligands is achieved under mild conditions through the oxidative addition of dibenzoiodolium ions to Pt(II) precursors to give Pt(IV) intermediates with a singly metalated 2-(2-iodoaryl)aryl ligand, followed by the reductive metalation of the C-I bond. The modulation of emission characteristics derivatization of both types of ligands is demonstrated.

View Article and Find Full Text PDF

The synthesis of bis-cyclometalated halido(aryl) Pt(IV) complexes [PtX(Ar)(C^N)], with C^N = cyclometalated 4-(-butyl)-2-phenylpyridine (bppy), 2-(-tolyl)pyridine (tpy), 2-(2-thienyl)pyridine (thpy), or 1-phenylisoquinoline (piq), X = I, Cl, or F, and Ar = Ph (for all C^N ligands) or -BuPh (for C^N = tpy), and the photophysical properties of the chlorido and fluorido series is reported. The oxidative addition of iodobenzene to -[Pt(C^N)] precursors is demonstrated to occur in MeCN under irradiation with visible light to give complexes [PtI(Ph)(C^N)], presumably involving radical species that also produce the activation of the solvent to give cyanomethyl complexes [PtI(CHCN)(C^N)]. The introduction of an aryl ligand can also be achieved by reacting -[Pt(C^N)] with (ArI)PF (Ar = Ph, -BuPh), which affords cationic intermediates of the type [Pt(Ar)(C^N)(NCMe)].

View Article and Find Full Text PDF

Hydride complexes resulting from the oxidative addition of C-H bonds are intermediates in hydrocarbon activation and functionalization reactions. The discovery of metal systems that enable their direct formation through photoexcitation with visible light could lead to advantageous synthetic methodologies. In this study, easily accessible dimers [Pt(μ-Cl)(C^N)] (C^N = cyclometalated 2-arylpyridine) are demonstrated as a very convenient source of Pt(C^N) subunits, which promote photooxidative C-H addition reactions with different 2-arylpyridines (N'^C'H) upon irradiation with blue light.

View Article and Find Full Text PDF

The synthesis, electrochemistry, and photophysical properties of a series of bis-cyclometalated Pt(IV) complexes that combine the mesoionic aryl-NHC ligand 4-butyl-3-methyl-1-phenyl-1-1,2,3-triazol-5-ylidene (trz) with either 1-phenylpyrazole or 2-arylpyridine (CN) are reported. The complexes (-6-54)-[PtCl(CN)(trz)] bearing cyclometalating 2-arylpyridines present phosphorescent emissions in the blue to yellow color range, which essentially arise from LC(CN) states, and reach quantum yields of ca. 0.

View Article and Find Full Text PDF

A stereoselective synthetic route to homo- and heteroleptic facial tris-cyclometalated Pt complexes is reported, involving the oxidative addition of 2-(2-pyridyl)- or 2-(1-isoquinolinyl)benzenediazonium salts to cis-[Pt(C^N) ] precursors, with C^N=cyclometalated 2-(p-tolyl)pyridine (tpy), 2-phenylquinoline (pq), 2-(2-thienyl)pyridine or 1-phenylisoquinoline (piq), to produce labile diazenide intermediates that undergo photochemical or thermal elimination of N . The method allows the preparation of derivatives bearing cyclometalated ligands of low π-π* transition energies. The new complexes exhibit phosphorescence in fluid solution at room temperature arising from triplet ligand-centered ( LC) excited states, which, in the cases of the heteroleptic derivatives, involve the ligand with the lowest π-π* gap.

View Article and Find Full Text PDF

Pt(ii) complexes cis-N,N-[PtCl(C^N)(N'^C'H)], where C^N represents a monocyclometalated 2,6-diaryl- or 2-arylpyridine ligand and N'^C'H is an N-coordinated 2-arylpyridine, are selectively obtained from bridge-cleavage reactions of dimers [Pt(μ-Cl)(C^N)] with excess N'^C'H at room temperature; isolation and characterization of derivatives of this kind is reported for the first time. Oxidation with PhICl affords Pt(iv) complexes [PtCl(C^N)(C'^N')], bearing two cyclometalated ligands in an unsymmetrical arrangement. The abstraction of the two chlorides using AgOTf at 120 °C in the presence of an additional 2-arylpyridine ligand leads to mer isomers of tris-cyclometalated Pt(iv) complexes if C^N derives from a 2-arylpyridine, whereas it results in a reductive C-C coupling if C^N is a monocyclometalated 2,6-diarylpyridine.

View Article and Find Full Text PDF

The synthesis, structure, and photophysical properties of luminescent Pt complexes that combine cyclometalated 1,2,3-triazolylidene and bi- or terdentate 2,6-diarylpyridine ligands are reported. The targeted complexes represent the first examples of Pt species with a cyclometalated mesoionic aryl-NHC ligand. They exhibit moderate or weak emissions in fluid solution at 298 K arising from LC states, which become very intense in poly(methyl methacrylate) (PMMA) matrices at 298 K.

View Article and Find Full Text PDF

The synthesis, characterization, and photophysical properties of a wide variety of bis-cyclometalated Pt(IV) complexes featuring a C2-symmetrical or unsymmetrical {Pt(ppy)2} unit (sym or unsym complexes, respectively; ppy = C-deprotonated 2-phenylpyridine) and different ancillary ligands are reported. Complexes sym-[Pt(ppy)2X2] (X = OTf(-), OAc(-)) were obtained by chloride abstraction from sym-[Pt(ppy)2Cl2] using the corresponding AgX salts, and the triflate derivative was employed to obtain homologous complexes with X = F(-), Br(-), I(-), trifluoroacetate (TFA(-)). Complexes unsym-[Pt(ppy)2(Me)X] (X = OTf(-), F(-)) were prepared by reacting unsym-[Pt(ppy)2(Me)Cl] with AgOTf or AgF, respectively, and the triflate derivative was employed as precursor for the synthesis of the homologues with X = Br(-), I(-), or TFA(-) through its reaction with the appropriate anionic ligands.

View Article and Find Full Text PDF

The synthesis, electrochemistry and photophysical properties of a family of Pt(iv) complexes with cyclometalated 2-(9,9-dimethylfluoren-2-yl)pyridine (flpy) are reported. Homoleptic and heteroleptic tris-cyclometalated complexes with a meridional configuration, mer-[Pt(C^N)2(flpy)]OTf, with C^N = flpy or cyclometalated 2-phenylpyridine (ppy), were prepared by reacting the bis-cyclometalated precursors [Pt(C^N)2Cl2] with flpyH in the presence of two equivalents of AgOTf. The corresponding facial isomers were obtained by photoisomerization.

View Article and Find Full Text PDF

The visible-light driven cyclometalation of arene substrates containing an N-donor heteroaromatic moiety as directing group by monocyclometalated Pt(II) complexes is reported. Precursors of the type [PtMe(C^N)(N^CH)], where N^CH is 2-phenylpyridine (ppyH) or related compunds with diverse electronic properties and C^N is the corresponding cyclometalated ligand, afford homoleptic cis-[Pt(C^N)2] complexes upon irradiation with blue LEDs at room temperature with evolution of methane. Heteroleptic derivatives cis-[Pt(ppy)(C'^N')] are obtained analogously from [PtMe(ppy)(N'^C'H)], where N'^C'H represents an extended set of heteroaromatic compounds.

View Article and Find Full Text PDF

A straightforward, one-pot procedure has been developed for the synthesis of bis-cyclometalated chloro(methyl)platinum(IV) complexes with a wide variety of heteroaromatic ligands of the 2-arylpyridine type. The new compounds exhibit phosphorescent emissions in the blue to orange colour range and represent the most efficient Pt(IV) emitters reported to date, with quantum yields up to 0.81 in fluid solutions at room temperature.

View Article and Find Full Text PDF

The synthesis, structure, electrochemistry, and photophysical properties of a series of heteroleptic tris- cyclometalated Pt(IV) complexes are reported. The complexes mer-[Pt(C^N)2 (C'^N')]OTf, with C^N=C-deprotonated 2-(2,4-difluorophenyl)pyridine (dfppy) or 2-phenylpyridine (ppy), and C'^N'=C-deprotonated 2-(2-thienyl)pyridine (thpy) or 1-phenylisoquinoline (piq), were obtained by reacting bis- cyclometalated precursors [Pt(C^N)2 Cl2] with AgOTf (2 equiv) and an excess of the N'^C'H pro-ligand. The complex mer-[Pt(dfppy)2 (ppy)]OTf was obtained analogously and photoisomerized to its fac counterpart.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the reactions of cyclometalated platinum compounds with 1,2-benzenedithiol and other reagents to form new complexes.
  • When Bu(4)NCl is absent, these reactions yield K2a and K2b, which then react with a gold source to create heterometallic derivatives.
  • Crystal structures show significant platinum-gold interactions, and various dynamic processes, solvatochromic behavior, and changes in electronic spectra are observed in these new complexes.
View Article and Find Full Text PDF

The reaction of AgClO(4) with piperidinium 2,7-di-tert-butyl-9H-fluorene-9-carbodithioate (pipH)[S(2)C(t-Bu-Hfy)] (1) (t-Bu-Hfy = 2,7-di-tert-butylfluoren-9-yl) afforded [Ag(n){S(2)C(t-Bu-Hfy)}(n)] (2), which reacted with phosphines to give [Ag{S(2)C(t-Bu-Hfy)}L(2)] [L = PPh(3) (3a); L(2) = bis(diphenylphosphino)ethane (dppe, 3b), 1,1'-bis(diphenylphosphino)ferrocene (dppf, 3c). By reacting complex 2 with AgClO(4) and piperidine in a 1:1:1 molar ratio, the dodecanuclear cluster [Ag(12){S(2)C(t-Bu-fy)}(6)] (4) (t-Bu-fy = 2,7-di-tert-butylfluoren-9-ylidene) was obtained. Compound 4 can also be directly prepared from the reaction of 1 with AgClO(4) and piperidine in a 1:2:1 molar ratio.

View Article and Find Full Text PDF

The Cu(III) complex Pr 4N[Cu{S 2C=( t-Bu-fy)} 2] ( 1) ( t-Bu-fy = 2,7-di- tert-butylfluoren-9-ylidene) reacts with [Cu(PR 3) 4]ClO 4 in 1:1 molar ratio in MeCN to give the dinuclear complexes [Cu 2{[SC=( t-Bu-fy)] 2S}(PR 3) n ] [ n = 2, R = Ph ( 2a); n = 3, R = To ( 3b); To = p-tolyl]. The analogue of 2a with R = To ( 2b) can be obtained from the reaction of 3b with 1/8 equiv of S 8. Compound 2b establishes a thioketene-exchange equilibrium in solution leading to the formation of [Cu 4{S 2C=( t-Bu-fy)} 2(PTo 3) 4] ( 4b) and [Cu 2{[SC=( t-Bu-fy)] 3S}(PTo 3) 2] ( 5b).

View Article and Find Full Text PDF

Acetone solutions of [Au(OClO3)(PCy3)] react with complexes [M{S2C=(t-Bu-fy)}2]2- [t-Bu-fy=2,7-di-tert-butylfluoren-9-ylidene; M=Pd (2a), Pt (2b)] or [M{S2C=(t-Bu-fy)}(dbbpy)] [dbbpy=4,4'-di-tert-butyl-2,2'-bipyridyl; M=Pd (3a), Pt (3b)] to give the heteronuclear complexes [M{S2C=(t-Bu-fy)}2{Au(PCy3)}2] [2:1 molar ratio; M=Pd (4a), Pt (4b)], [M{S2C=(t-Bu-fy)}(dbbpy){Au(PCy3)}]ClO4 [1:1 molar ratio; M=Pd (5a), Pt (5b)], or [M{S2C=(t-Bu-fy)}(dbbpy){Au(PCy3)}2](ClO4)2 [2:1 molar ratio; M=Pd (6a), Pt (6b)]. The crystal structures of 3a, 4a, 4b, 5b, and 6a have been solved by single-crystal X-ray studies and, in the cases of the heteronuclear derivatives, reveal the formation of short Pd..

View Article and Find Full Text PDF

Platinum(II) complexes with (fluoren-9-ylidene)methanedithiolato and its 2,7-di-tert-butyl- and 2,7-dimethoxy-substituted analogues were obtained by reacting different chloroplatinum(II) precursors with the piperidinium dithioates (pipH)[(2,7-R2C12H6)CHCS2] [R = H (1a), t-Bu (1b), or OMe (1c)] in the presence of piperidine. The anionic complexes Q2[Pt{S(2)C=C(C12H6R(2)-2,7)}2] [R = H, (Pr(4)N)(2)2a; R = t-Bu, (Pr4N)(2)2b, (Et4N)(2)2b; R = OMe, (Pr4N)(2)2c] were prepared from PtCl(2), piperidine, the corresponding QCl salt, and 1a-c in molar ratio 1:2:2:2. In the absence of QCl, the complexes (pipH)(2)2b and [Pt(pip)(4)]2b were isolated depending on the PtCl(2):pip molar ratio.

View Article and Find Full Text PDF

Piperidinium 9H-fluorene-9-carbodithioate and its 2,7-di-tert-butyl-substituted analogue [(pipH)(S(2)CCH(C(12)H(6)R(2)-2,7)), R = H (1a), t-Bu (1b)] and 2,7-bis(octyloxy)-9H-fluorene-9-carbodithioic acid [HS(2)CCH(C(12)H(6)(OC(8)H(17))(2)-2,7), 2] and its tautomer [2,7-bis(octyloxy)fluoren-9-ylidene]methanedithiol [(HS)(2)C=C(C(12)H(6)(OC(8)H(17))(2)-2,7), 3] were employed for the preparation of gold complexes with the (fluoren-9-ylidene)methanedithiolato ligand and its substituted analogues. The gold(I) compounds Q(2)[Au(2)(mu-kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)], where Q(+) = PPN(+) or Pr(4)N(+) for R = H (Q(2)4a) or Q(+) = Pr(4)N(+) for R = OC(8)H(17) [(Pr(4)N)(2)4c], were synthesized by reacting Q[AuCl(2)] with 1a or 2 (1:1) and excess piperidine or diethylamine. Complexes of the type [(Au(PR'3))(2)(mu-kappa(2)-S,S-S(2)C=C(C(12)H(6)R(2)-2,7))(2)] with R = H and R' = Me (5a), Et (5b), Ph (5c), and Cy (5d) or R = t-Bu and R' = Me (5e), Et (5f), Ph (5g), and Cy (5h) were obtained by reacting [AuCl(PR'(3))] with 1a,b (1:2) and piperidine.

View Article and Find Full Text PDF